RSS-Feed abonnieren
DOI: 10.1055/a-2495-8450
Bi- und multimodale Endoskopie der Harnblase in Diagnostik und Therapie
Bimodal and multimodal endoscopy of the urinary bladder in diagnosis and treatment
Zusammenfassung
Die Weißlichtzystoskopie ist ein präzises Instrument zur Detektion und Therapie von papillären Blasentumoren. Verschiedene zusätzliche makroskopische Detektionstechniken sind etabliert. Bei einigen dieser, allen voran der PDD oder NBI konnte ein zusätzlicher Nutzen auf die Blasentumorrezidivraten nachgewiesen werden, sodass die Anwendung im Rahmen der Diagnostik und Therapie nach Verfügbarkeit erfolgen sollte. Weitere mikroskopische Klassifizierungstechniken oder multimodale Verfahren sind in der Entwicklung. Die breitflächige Anwendung der Techniken ist bislang ausstehend. Neuere Modalitäten wie beispielsweise multiparametrische Bildgebung oder KI-gestützte Endoskopie versprechen in Zukunft einen bedeutenden Innovationssprung und könnten dafür sorgen, dass die urologische Echtzeit-Endoskopie entscheidend weiterentwickelt wird.
Abstract
White light cystoscopy is a precise instrument for the detection and treatment of papillary bladder tumors. Various additional macroscopic detection methods have been established. Some of them, especially PDD or NBI, have been shown to have an additional benefit on the recurrence rate of bladder tumors, so they should be used as part of the diagnosis and treatment when available. Other microscopic classification techniques or multimodality techniques are currently under development. Widespread use of these techniques is still pending. Newer modalities such as multi-parametric imaging or AI-assisted endoscopy promise a significant leap in innovation in the future and could ensure that real-time urological endoscopy is significantly advanced.
Schlüsselwörter
Harnblasenkarzinom - Urothelkarzinom - Zystoskopie - Bildgebung - KI-unterstützte DiagnostikPublikationsverlauf
Eingereicht: 30. Oktober 2024
Angenommen nach Revision: 26. November 2024
Artikel online veröffentlicht:
28. Januar 2025
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 International Agency for Research on Cancer. „Cancer Tomorro”. Zugriff am 20. Oktober 2024 unter: https://gco.iarc.fr/tomorrow/en/dataviz/
- 2 Svatek RS. et al. The economics of bladder cancer: costs and considerations of caring for this disease. Eur Urol 2014; 66: 253-262
- 3 Babjuk M. et al. European Association of Urology Guidelines on Non-muscle-invasive Bladder Cancer (Ta, T1, and Carcinoma in Situ). Eur Urol 2022; 81: 75-94
- 4 Dekalo S, Matzkin H, Mabjeesh NJ. Can urologists accurately stage and grade urothelial bladder cancer by assessing endoscopic photographs?. J Telemed Telecare 2018; 24: 603-607
- 5 Singh J, Farooq S, Joshi S. et al. Histopathologic findings in patients who have undergone blue light cystoscopy and bladder biopsy or transurethral resection: A contemporary clinicopathologic analysis of 100 cases. Pathol Res Pract 2022; 234: 153916
- 6 Suarez-Ibarrola R. et al. Current Standards in the Endoscopic Management of Bladder Cancer: A Survey Evaluation among Urologists in German-Speaking Countries. Urol Int 2020; 104: 410-416
- 7 Waldbillig F. et al. Current European Trends in Endoscopic Imaging and Transurethral Resection of Bladder Tumors. J Endourol 2020; 34: 312-321
- 8 Herr HW. Max Nitze, the Cystoscope and Urology. The Journal of Urology 2006; 176: 1313-1316
- 9 Kriegmair M. et al. Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin fluorescence. J Urol 1996; 155: 105-109; 109–110
- 10 Remmelink MJ. et al. Advanced optical imaging techniques for bladder cancer detection and diagnosis: a systematic review. BJU International 2024; 134: 890-905
- 11 Heer R. et al. A Randomized Trial of PHOTOdynamic Surgery in Non-Muscle-Invasive Bladder Cancer. NEJM Evid 2022; 1 EVIDoa2200092
- 12 Drejer D, Moltke AL, Nielsen AM. et al. DaBlaCa-11: Photodynamic Diagnosis in Flexible Cystoscopy-A Randomized Study With Focus on Recurrence. Urology 2020; 137: 91-96
- 13 Veeratterapillay R. et al. Time to Turn on the Blue Lights: A Systematic Review and Meta-analysis of Photodynamic Diagnosis for Bladder Cancer. Eur Urol Open Sci 2021; 31: 17-27
- 14 Maisch P. et al. Blue vs white light for transurethral resection of non-muscle-invasive bladder cancer: an abridged Cochrane Review. BJU Int 2022; 130: 730-740
- 15 Zhao H. et al. Comparison of hexaminolevulinate (HAL) -guided versus white light transurethral resection for NMIBC: A systematic review and meta-analysis of randomized controlled trials. Photodiagnosis Photodyn Ther 2023; 41: 103220
- 16 Daneshmand S. et al. Efficacy and Safety of Blue Light Flexible Cystoscopy with Hexaminolevulinate in the Surveillance of Bladder Cancer: A Phase III, Comparative, Multicenter Study. J Urol 2018; 199: 1158-1165
- 17 Deutsche Gesellschaft für Urologie 24958450e.V. (DGU), Deutsche Krebsgesellschaft e.V. (DKG), Interdisziplinäre Arbeitsgruppe BlasenCarcinom. S3-Leitlinie Früherkennung, Diagnose, Therapie und Nachsorge des Harnblasenkarzinoms. Version 2.0. 2019
- 18 Holzbeierlein JM. et al. Diagnosis and Treatment of Non-Muscle Invasive Bladder Cancer: AUA/SUO Guideline: 2024 Amendment. J Urol 2024; 211: 533-538
- 19 Lai LY. et al. Narrow band imaging versus white light cystoscopy alone for transurethral resection of non-muscle invasive bladder cancer. Cochrane Database Syst Rev 2022; 4: Cd014887
- 20 Li H. et al. Novel Visualization Methods Assisted Transurethral Resection for Bladder Cancer: An Updated Survival-Based Systematic Review and Meta-Analysis. Front Oncol 2021; 11: 644341
- 21 Sari Motlagh R. et al. Impact of enhanced optical techniques at time of transurethral resection of bladder tumour, with or without single immediate intravesical chemotherapy, on recurrence rate of non-muscle-invasive bladder cancer: a systematic review and network meta-analysis of randomized trials. BJU Int 2021; 128: 280-289
- 22 Rosette J de la. et al. Conventional white light imaging-assisted transurethral resection of bladder tumour (TURBT) versus IMAGE1S-assisted TURBT in non-muscle-invasive bladder cancer patients: trial protocol and 18 months results. World J Urol 2022; 40: 727-738
- 23 Trelles Guzmán CR. et al. Randomized clinical trial on the use of IMAGE1 S LIGHT (SPIES) vs. white light in the prevention of recurrence during transurethral resection of bladder tumors: Analysis after 12-month follow-up. Actas Urol Esp (Engl Ed) 2024; 48: 512-520
- 24 Howard JM, Woldu SL, Daneshmand S. et al. Enhanced Endoscopy with IMAGE1 S CHROMA Improves Detection of Nonmuscle Invasive Bladder Cancer During Transurethral Resection. J Endourol 2021; 35: 647-651
- 25 Kriegmair MC, Honeck P, Theuring M. et al. Wide-field autofluorescence-guided TUR-B for the detection of bladder cancer: a pilot study. World J Urol 2018; 36: 745-751
- 26 Straten C van. et al. The accuracy of cystoscopy in predicting muscle invasion in newly diagnosed bladder cancer patients. World J Urol 2023; 41: 1829-1835
- 27 Kriegmair MC. et al. Enhanced imaging in urological endoscopy. Urologe A 2021; 60: 8-18
- 28 Yang L. et al. Research progress on the application of optical coherence tomography in the field of oncology. Front Oncol 2022; 12: 953934
- 29 Xiong YQ. et al. Diagnostic accuracy of optical coherence tomography for bladder cancer: A systematic review and meta-analysis. Photodiagnosis Photodyn Ther 2019; 27: 298-304
- 30 Ruiter BM de. et al. Grading urothelial carcinoma with probe-based confocal laser endomicroscopy during flexible cystoscopy. World J Urol 2024; 42: 450
- 31 Krafft C, Popp J, Bronsert P. et al. Raman Spectroscopic Imaging of Human Bladder Resectates towards Intraoperative Cancer Assessment. Cancers 2023; 15: 2162
- 32 Zhang H. et al. The development and clinical application of microscopic endoscopy for in vivo optical biopsies: Endocytoscopy and confocal laser endomicroscopy. Photodiagnosis Photodyn Ther 2022; 38: 102826
- 33 Ahmadi H, Daneshmand S. Multiparametric cystoscopy: is the future here yet?. Transl Androl Urol 2021; 10: 1-6
- 34 Shkolyar E. et al. Optimizing cystoscopy and TURBT: enhanced imaging and artificial intelligence. 2024;
- 35 Zlobina NV. et al. In vivo assessment of bladder cancer with diffuse reflectance and fluorescence spectroscopy: A comparative study. Lasers Surg Med 2024; 56: 496-507
- 36 Kriegmair MC. et al. Multiparametric Cystoscopy for Detection of Bladder Cancer Using Real-time Multispectral Imaging. European Urology 2020; 77: 251-259
- 37 O’Sullivan S. et al. Explainable artificial intelligence (XAI): closing the gap between image analysis and navigation in complex invasive diagnostic procedures. World J Urol 2022; 40: 1125-1134
- 38 Kriegmair MC. et al. Digital Mapping of the Urinary Bladder: Potential for Standardized Cystoscopy Reports. Urology 2017; 104: 235-241
- 39 Krafft C. et al. Raman Spectroscopy to Characterize Bladder Tissue for Multidimensional Diagnostics of Cancer in Urology. Current Directions in Biomedical Engineering 2020; 6: 250-253
- 40 Suarez-Ibarrola R. et al. A novel endoimaging system for endoscopic 3D reconstruction in bladder cancer patients. Minim Invasive Ther Allied Technol 2022; 31: 34-41
- 41 Shkolyar E. et al. Augmented Bladder Tumor Detection Using Deep Learning. Eur Urol 2019; 76: 714-718
- 42 Chang TC. et al. Real-time Detection of Bladder Cancer Using Augmented Cystoscopy with Deep Learning: a Pilot Study. 2023;
- 43 Ye Z, Luo S, Wang L. Deep Learning Based Cystoscopy Image Enhancement. J Endourol 2024; 38: 962-968
- 44 Baana M. et al. Using artificial intelligence for bladder cancer detection during cystoscopy and its impact on clinical outcomes: a protocol for a systematic review and meta-analysis. BMJ Open 2024; 14: e089125