Semin Respir Crit Care Med
DOI: 10.1055/a-2500-1878
Review Article

State of the Art and Emerging Technologies in Vaccine Design for Respiratory Pathogens

Matteo Ridelfi*
1   Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
2   Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
,
Giulio Pierleoni*
1   Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
2   Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
,
Vittoria Zucconi Galli Fonseca*
1   Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
,
Giampiero Batani
1   Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
,
Rino Rappuoli
3   Fondazione Biotecnopolo di Siena, Siena, Italy
,
Claudia Sala
1   Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
› Author Affiliations

Abstract

In this review, we present the efforts made so far in developing effective solutions to prevent infections caused by seven major respiratory pathogens: influenza virus, respiratory syncytial virus (RSV), the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Bordetella pertussis, Streptococcus pneumoniae (pneumococcus), Mycobacterium tuberculosis, and Pseudomonas aeruginosa. Advancements driven by the recent coronavirus disease 2019 (COVID-19) crisis have largely focused on viruses, but effective prophylactic solutions for bacterial pathogens are also needed, especially in light of the antimicrobial resistance (AMR) phenomenon. Here, we discuss various innovative key technologies that can help address this critical need, such as (a) the development of Lung-on-Chip ex vivo models to gain a better understanding of the pathogenesis process and the host–microbe interactions; (b) a more thorough investigation of the mechanisms behind mucosal immunity as the first line of defense against pathogens; (c) the identification of correlates of protection (CoPs) which, in conjunction with the Reverse Vaccinology 2.0 approach, can push a more rational and targeted design of vaccines. By focusing on these critical areas, we expect substantial progress in the development of new vaccines against respiratory bacterial pathogens, thereby enhancing global health protection in the framework of the increasingly concerning AMR emergence.

* These authors contributed equally to this work.




Publication History

Article published online:
27 January 2025

© 2025. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Yeh MT, Smith M, Carlyle S. et al. Genetic stabilization of attenuated oral vaccines against poliovirus types 1 and 3. Nature 2023; 619 (7968): 135-142
  • 2 Harrington WN, Kackos CM, Webby RJ. The evolution and future of influenza pandemic preparedness. Exp Mol Med 2021; 53 (05) 737-749
  • 3 Bouzeyen R, Javid B. Therapeutic vaccines for tuberculosis: an overview. Front Immunol 2022; 13: 878471
  • 4 Locht C, Mielcarek N. New pertussis vaccination approaches: en route to protect newborns?. FEMS Immunol Med Microbiol 2012; 66 (02) 121-133
  • 5 Macias AE, McElhaney JE, Chaves SS. et al. The disease burden of influenza beyond respiratory illness. Vaccine 2021; 39 (Suppl. 01) A6-A14
  • 6 Msemburi W, Karlinsky A, Knutson V, Aleshin-Guendel S, Chatterji S, Wakefield J. The WHO estimates of excess mortality associated with the COVID-19 pandemic. Nature 2023; 613 (7942): 130-137
  • 7 Young-Xu Y, van Aalst R, Russo E, Lee JKH, Chit A. The annual burden of seasonal influenza in the US Veterans Affairs population. PLoS One 2017; 12 (01) e0169344
  • 8 Hadian SA, Rezayatmand R. Economic impact of acute respiratory disease pandemics: a scoping review. J Res Med Sci 2022; 27: 88
  • 9 Feldman C, Richards G. Appropriate antibiotic management of bacterial lower respiratory tract infections. F1000Res 2018; 7: F1000 Faculty Rev-1121
  • 10 Poudel AN, Zhu S, Cooper N. et al. The economic burden of antibiotic resistance: a systematic review and meta-analysis. PLoS One 2023; 18 (05) e0285170
  • 11 Jones RM, Adams KN, Eldesouky HE, Sherman DR. The evolving biology of Mycobacterium tuberculosis drug resistance. Front Cell Infect Microbiol 2022; 12: 1027394
  • 12 Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 2019; 37 (01) 177-192
  • 13 Senok A, Thomsen J, Abdulrazzaq NM, Menezes GA, Ayoub Moubareck C, Everett D. UAE AMR Surveillance Consortium. Antimicrobial resistance in Streptococcus pneumoniae: a retrospective analysis of emerging trends in the United Arab Emirates from 2010 to 2021. Front Public Health 2023; 11: 1244357
  • 14 Ivaska L, Barkoff AM, Mertsola J, He Q. Macrolide resistance in Bordetella pertussis: current situation and future challenges. Antibiotics (Basel) 2022; 11 (11) 1570
  • 15 Heida R, Frijlink HW, Hinrichs WLJ. Inhalation of vaccines and antiviral drugs to fight respiratory virus infections: reasons to prioritize the pulmonary route of administration. MBio 2023; 14 (05) e0129523
  • 16 Srinivas KP. Chapter 1 - Recent developments in vaccines strategies against human viral pathogens. In: Viswanath B. ed. Recent Developments in Applied Microbiology and Biochemistry. Academic Press; 2021: 3-12 . Accessed December 20, 2024 at: https://doi.org/10.1016/B978-0-12-821406-0.00001-1
  • 17 Hwang SH, Lee H, Jung M. et al. Incidence, severity, and mortality of influenza during 2010-2020 in Korea: a nationwide study based on the population-based national health insurance service database. J Korean Med Sci 2023; 38 (08) e58
  • 18 Kim YH, Hong KJ, Kim H, Nam JH. Influenza vaccines: past, present, and future. Rev Med Virol 2022; 32 (01) e2243
  • 19 Nypaver C, Dehlinger C, Carter C. Influenza and influenza vaccine: a review. J Midwifery Womens Health 2021; 66 (01) 45-53
  • 20 Gupta D, Mohan S. Influenza vaccine: a review on current scenario and future prospects. J Genet Eng Biotechnol 2023; 21 (01) 154
  • 21 Shichinohe S, Watanabe T. Advances in adjuvanted influenza vaccines. Vaccines (Basel) 2023; 11 (08) 1391
  • 22 Centers for Disease Control and Prevention (CDC). Selecting Viruses for the Seasonal Flu Vaccine. Published March 12, 2024. Accessed June 26, 2024 at: https://www.cdc.gov/flu/vaccine-process/vaccine-selection.html#:~:text=Summary,during%20the%20upcoming%20flu%20season
  • 23 Wang WC, Sayedahmed EE, Sambhara S, Mittal SK. Progress towards the development of a universal influenza vaccine. Viruses 2022; 14 (08) 1684
  • 24 Nuwarda RF, Alharbi AA, Kayser V. An overview of influenza viruses and vaccines. Vaccines (Basel) 2021; 9 (09) 1032
  • 25 Mould-Quevedo JF, Pelton SI, Nguyen VH. Vaccine effectiveness of cell-based quadrivalent influenza vaccine in children: a narrative review. Vaccines (Basel) 2023; 11 (10) 1594
  • 26 Chen J, Wang J, Zhang J, Ly H. Advances in development and application of influenza vaccines. Front Immunol 2021; 12: 711997
  • 27 Wong SS, Webby RJ. Traditional and new influenza vaccines. Clin Microbiol Rev 2013; 26 (03) 476-492
  • 28 Sedova ES, Shcherbinin DN, Migunov AI. et al. Recombinant influenza vaccines. Acta Nat (Engl Ed) 2012; 4 (04) 17-27
  • 29 Huang Z, Gong H, Sun Q, Yang J, Yan X, Xu F. Research progress on emulsion vaccine adjuvants. Heliyon 2024; 10 (03) e24662
  • 30 Wilkins AL, Kazmin D, Napolitani G. et al. AS03- and MF59-adjuvanted influenza vaccines in children. Front Immunol 2017; 8: 1760
  • 31 Zhu W, Dong C, Wei L, Wang BZ. Promising adjuvants and platforms for influenza vaccine development. Pharmaceutics 2021; 13 (01) 68
  • 32 Tregoning JS, Russell RF, Kinnear E. Adjuvanted influenza vaccines. Hum Vaccin Immunother 2018; 14 (03) 550-564
  • 33 Savic M, Penders Y, Shi T, Branche A, Pirçon JY. Respiratory syncytial virus disease burden in adults aged 60 years and older in high-income countries: a systematic literature review and meta-analysis. Influenza Other Respir Viruses 2023; 17 (01) e13031
  • 34 Carbonell-Estrany X, Simões EA, Bont LJ, Paes BA. RSV Prevention Collaborators. Prioritising respiratory syncytial virus prevention in low-income and middle-income countries. Lancet Glob Health 2023; 11 (05) e655-e657
  • 35 Ruckwardt TJ. The road to approved vaccines for respiratory syncytial virus. NPJ Vaccines 2023; 8 (01) 138
  • 36 Kim HW, Canchola JG, Brandt CD. et al. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am J Epidemiol 1969; 89 (04) 422-434
  • 37 Caserta MT, O'Leary ST, Munoz FM, Ralston SL. Committee on Infectious Diseases. Palivizumab prophylaxis in infants and young children at increased risk of hospitalization for respiratory syncytial virus infection. Pediatrics 2023; 152 (01) e2023061803
  • 38 McLellan JS, Yang Y, Graham BS, Kwong PD. Structure of respiratory syncytial virus fusion glycoprotein in the postfusion conformation reveals preservation of neutralizing epitopes. J Virol 2011; 85 (15) 7788-7796
  • 39 McLellan JS, Chen M, Leung S. et al. Structure of RSV fusion glycoprotein trimer bound to a prefusion-specific neutralizing antibody. Science 2013; 340 (6136): 1113-1117
  • 40 See KC. Vaccination for respiratory syncytial virus: a narrative review and primer for clinicians. Vaccines (Basel) 2023; 11 (12) 1809
  • 41 Kampmann B, Madhi SA, Munjal I. et al; MATISSE Study Group. Bivalent prefusion F vaccine in pregnancy to prevent rsv illness in infants. N Engl J Med 2023; 388 (16) 1451-1464
  • 42 Curran D, Matthews S, Cabrera ES. et al; Members of the AReSVi-006 Study Group. The respiratory syncytial virus prefusion F protein vaccine attenuates the severity of respiratory syncytial virus-associated disease in breakthrough infections in adults ≥60 years of age. Influenza Other Respir Viruses 2024; 18 (02) e13236
  • 43 Walsh EE, Pérez Marc G, Zareba AM. et al; RENOIR Clinical Trial Group. Efficacy and safety of a bivalent RSV prefusion F vaccine in older adults. N Engl J Med 2023; 388 (16) 1465-1477
  • 44 Wilson E, Goswami J, Baqui AH. et al; ConquerRSV Study Group. Efficacy and safety of an mRNA-based RSV PreF vaccine in older adults. N Engl J Med 2023; 389 (24) 2233-2244
  • 45 Bok K, Sitar S, Graham BS, Mascola JR. Accelerated COVID-19 vaccine development: milestones, lessons, and prospects. Immunity 2021; 54 (08) 1636-1651
  • 46 Krammer F. SARS-CoV-2 vaccines in development. Nature 2020; 586 (7830): 516-527
  • 47 Zhang Z, Shen Q, Chang H. Vaccines for COVID-19: a systematic review of immunogenicity, current development, and future prospects. Front Immunol 2022; 13: 843928
  • 48 Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 2018; 17 (04) 261-279
  • 49 Mir S, Mir M. The mRNA vaccine, a swift warhead against a moving infectious disease target. Expert Rev Vaccines 2024; 23 (01) 336-348
  • 50 Sahin U, Muik A, Vogler I. et al. BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature 2021; 595 (7868): 572-577
  • 51 Echaide M, Chocarro de Erauso L, Bocanegra A, Blanco E, Kochan G, Escors D. mRNA vaccines against SARS-CoV-2: advantages and caveats. Int J Mol Sci 2023; 24 (06) 5944
  • 52 Rosa SS, Prazeres DMF, Azevedo AM, Marques MPC. mRNA vaccines manufacturing: challenges and bottlenecks. Vaccine 2021; 39 (16) 2190-2200
  • 53 Morais P, Adachi H, Yu YT. The critical contribution of pseudouridine to mRNA COVID-19 vaccines. Front Cell Dev Biol 2021; 9: 789427
  • 54 Aldosari BN, Alfagih IM, Almurshedi AS. Lipid nanoparticles as delivery systems for RNA-based vaccines. Pharmaceutics 2021; 13 (02) 206
  • 55 Mattoo S, Cherry JD. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 2005; 18 (02) 326-382
  • 56 Martin SW, Pawloski L, Williams M. et al. Pertactin-negative Bordetella pertussis strains: evidence for a possible selective advantage. Clin Infect Dis 2015; 60 (02) 223-227
  • 57 Jayasundara D, Lee E, Octavia S, Lan R, Tanaka MM, Wood JG. Emergence of pertactin-deficient pertussis strains in Australia can be explained by models of vaccine escape. Epidemics 2020; 31: 100388
  • 58 Kroes MM, Miranda-Bedate A, Hovingh ES. et al. Naturally circulating pertactin-deficient Bordetella pertussis strains induce distinct gene expression and inflammatory signatures in human dendritic cells. Emerg Microbes Infect 2021; 10 (01) 1358-1368
  • 59 Leininger E, Roberts M, Kenimer JG. et al. Pertactin, an Arg-Gly-Asp-containing Bordetella pertussis surface protein that promotes adherence of mammalian cells. Proc Natl Acad Sci U S A 1991; 88 (02) 345-349
  • 60 Funnell SG, Robinson A. A novel adherence assay for Bordetella pertussis using tracheal organ cultures. FEMS Microbiol Lett 1993; 110 (02) 197-203
  • 61 Rodríguez ME, Hellwig SMM, Pérez Vidakovics MLA, Berbers GAM, van de Winkel JGJ. Bordetella pertussis attachment to respiratory epithelial cells can be impaired by fimbriae-specific antibodies. FEMS Immunol Med Microbiol 2006; 46 (01) 39-47
  • 62 Zurita ME, Wilk MM, Carriquiriborde F. et al. A pertussis outer membrane vesicle-based vaccine induces lung-resident memory CD4 T cells and protection against Bordetella pertussis, including pertactin deficient strains. Front Cell Infect Microbiol 2019; 9: 125
  • 63 Seubert A, D'Oro U, Scarselli M, Pizza M. Genetically detoxified pertussis toxin (PT-9K/129G): implications for immunization and vaccines. Expert Rev Vaccines 2014; 13 (10) 1191-1204
  • 64 Burnette WN, Cieplak W, Mar VL, Kaljot KT, Sato H, Keith JM. Pertussis toxin S1 mutant with reduced enzyme activity and a conserved protective epitope. Science 1988; 242 (4875): 72-74
  • 65 Barbieri JT, Cortina G. ADP-ribosyltransferase mutations in the catalytic S-1 subunit of pertussis toxin. Infect Immun 1988; 56 (08) 1934-1941
  • 66 Ibsen PH. The effect of formaldehyde, hydrogen peroxide and genetic detoxification of pertussis toxin on epitope recognition by murine monoclonal antibodies. Vaccine 1996; 14 (05) 359-368
  • 67 Yuen CT, Asokanathan C, Cook S, Lin N, Xing D. Effect of different detoxification procedures on the residual pertussis toxin activities in vaccines. Vaccine 2016; 34 (18) 2129-2134
  • 68 Berggård K, Lindahl G, Dahlbäck B, Blom AM. Bordetella pertussis binds to human C4b-binding protein (C4BP) at a site similar to that used by the natural ligand C4b. Eur J Immunol 2001; 31 (09) 2771-2780
  • 69 Marzouqi I, Richmond P, Fry S, Wetherall J, Mukkur T. Development of improved vaccines against whooping cough: current status. Hum Vaccin 2010; 6 (07) 543-553
  • 70 Mills KH, Ryan M, Ryan E, Mahon BP. A murine model in which protection correlates with pertussis vaccine efficacy in children reveals complementary roles for humoral and cell-mediated immunity in protection against Bordetella pertussis . Infect Immun 1998; 66 (02) 594-602
  • 71 Gorringe AR, Vaughan TE. Bordetella pertussis fimbriae (Fim): relevance for vaccines. Expert Rev Vaccines 2014; 13 (10) 1205-1214
  • 72 Gasperini G, Biagini M, Arato V. et al. Outer membrane vesicles (OMV)-based and proteomics-driven antigen selection identifies novel factors contributing to Bordetella pertussis adhesion to epithelial cells. Mol Cell Proteomics 2018; 17 (02) 205-215
  • 73 Gregg KA, Wang Y, Warfel J. et al. Antigen discovery for next-generation pertussis vaccines using immunoproteomics and transposon-directed insertion sequencing. J Infect Dis 2023; 227 (04) 583-591
  • 74 Asensio CJA, Gaillard ME, Moreno G. et al. Outer membrane vesicles obtained from Bordetella pertussis Tohama expressing the lipid A deacylase PagL as a novel acellular vaccine candidate. Vaccine 2011; 29 (08) 1649-1656
  • 75 Roberts R, Moreno G, Bottero D. et al. Outer membrane vesicles as acellular vaccine against pertussis. Vaccine 2008; 26 (36) 4639-4646
  • 76 Allen AC, Wilk MM, Misiak A, Borkner L, Murphy D, Mills KHG. Sustained protective immunity against Bordetella pertussis nasal colonization by intranasal immunization with a vaccine-adjuvant combination that induces IL-17-secreting TRM cells. Mucosal Immunol 2018; 11 (06) 1763-1776
  • 77 Pschunder B, Locati L, López O. et al. Outer membrane vesicles derived from Bordetella pertussis are potent adjuvant that drive Th1-biased response. Front Immunol 2024; 15: 1387534
  • 78 Raeven RHM, Rockx-Brouwer D, Kanojia G. et al. Intranasal immunization with outer membrane vesicle pertussis vaccine confers broad protection through mucosal IgA and Th17 responses. Sci Rep 2020; 10 (01) 7396
  • 79 Mielcarek N, Debrie AS, Raze D. et al. Live attenuated B. pertussis as a single-dose nasal vaccine against whooping cough. PLoS Pathog 2006; 2 (07) e65
  • 80 Mielcarek N, Debrie AS, Mahieux S, Locht C. Dose response of attenuated Bordetella pertussis BPZE1-induced protection in mice. Clin Vaccine Immunol 2010; 17 (03) 317-324
  • 81 Feunou PF, Bertout J, Locht C. T- and B-cell-mediated protection induced by novel, live attenuated pertussis vaccine in mice. Cross protection against parapertussis. PLoS One 2010; 5 (04) e10178
  • 82 Li R, Lim A, Phoon MC. et al. Attenuated Bordetella pertussis protects against highly pathogenic influenza A viruses by dampening the cytokine storm. J Virol 2010; 84 (14) 7105-7113
  • 83 Locht C, Papin JF, Lecher S. et al. Live attenuated pertussis vaccine BPZE1 protects baboons against Bordetella pertussis disease and infection. J Infect Dis 2017; 216 (01) 117-124
  • 84 Keech C, Miller VE, Rizzardi B. et al. Immunogenicity and safety of BPZE1, an intranasal live attenuated pertussis vaccine, versus tetanus-diphtheria-acellular pertussis vaccine: a randomised, double-blind, phase 2b trial. Lancet 2023; 401 (10379): 843-855
  • 85 Jansen AGSC, Rodenburg GD, van der Ende A. et al. Invasive pneumococcal disease among adults: associations among serotypes, disease characteristics, and outcome. Clin Infect Dis 2009; 49 (02) e23-e29
  • 86 World Health Organization. Pneumococcal disease. Accessed June 28, 2024 at: https://www.who.int/teams/health-product-policy-and-standards/standards-and-specifications/norms-and-standards/vaccine-standardization/pneumococcal-disease
  • 87 Cedrone F, Montagna V, Del Duca L. et al. The burden of Streptococcus pneumoniae-related admissions and in-hospital mortality: a retrospective observational study between the years 2015 and 2022 from a southern Italian province. Vaccines (Basel) 2023; 11 (08) 1324
  • 88 Geno KA, Gilbert GL, Song JY. et al. Pneumococcal capsules and their types: past, present, and future. Clin Microbiol Rev 2015; 28 (03) 871-899
  • 89 Cillóniz C, Amaro R, Torres A. Pneumococcal vaccination. Curr Opin Infect Dis 2016; 29 (02) 187-196
  • 90 Hausdorff WP, Bryant J, Paradiso PR, Siber GR. Which pneumococcal serogroups cause the most invasive disease: implications for conjugate vaccine formulation and use, part I. Clin Infect Dis 2000; 30 (01) 100-121
  • 91 Feldman C, Anderson R. Recent advances in our understanding of Streptococcus pneumoniae infection. F1000Prime Rep 2014; 6: 82
  • 92 Daniels CC, Rogers PD, Shelton CM. A review of pneumococcal vaccines: current polysaccharide vaccine recommendations and future protein antigens. J Pediatr Pharmacol Ther 2016; 21 (01) 27-35
  • 93 Ochoa-Gondar O, Vila-Corcoles A, Rodriguez-Blanco T. et al. Effectiveness of the 23-valent pneumococcal polysaccharide vaccine against community-acquired pneumonia in the general population aged ≥60 years: 3 years of follow-up in the CAPAMIS study. Clin Infect Dis 2014; 58 (07) 909-917
  • 94 Moberley S, Holden J, Tatham DP, Andrews RM. Vaccines for preventing pneumococcal infection in adults. Cochrane Database Syst Rev 2013; 2013 (01) CD000422
  • 95 Ansaldi F, de Florentiis D, Canepa P. et al. Carriage of Streptococcus pneumoniae 7 years after implementation of vaccination program in a population with very high and long-lasting coverage, Italy. Vaccine 2012; 30 (13) 2288-2294
  • 96 Black S, Shinefield H, Fireman B. et al; Northern California Kaiser Permanente Vaccine Study Center Group. Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Pediatr Infect Dis J 2000; 19 (03) 187-195
  • 97 Paradiso PR. Advances in pneumococcal disease prevention: 13-valent pneumococcal conjugate vaccine for infants and children. Clin Infect Dis 2011; 52 (10) 1241-1247
  • 98 Goffin P, Dewerchin M, De Rop P, Blais N, Dehottay P. High-yield production of recombinant CRM197, a non-toxic mutant of diphtheria toxin, in the periplasm of Escherichia coli. Biotechnol J 2017; 12 (07) 1700168
  • 99 van Werkhoven CH. Herd effects of child vaccination with pneumococcal conjugate vaccine against pneumococcal non-invasive community-acquired pneumonia: What is the evidence?. Hum Vaccin Immunother 2017; 13 (05) 1177-1181
  • 100 Hammitt LL, Bruden DL, Butler JC. et al. Indirect effect of conjugate vaccine on adult carriage of Streptococcus pneumoniae: an explanation of trends in invasive pneumococcal disease. J Infect Dis 2006; 193 (11) 1487-1494
  • 101 Palmu AA, Jokinen J, Nieminen H. et al. Effectiveness of the ten-valent pneumococcal conjugate vaccine against tympanostomy tube placements in a cluster-randomized trial. Pediatr Infect Dis J 2015; 34 (11) 1230-1235
  • 102 Centers for Disease Control and Prevention (CDC). Use of 13-Valent Pneumococcal Conjugate Vaccine and 23-Valent Pneumococcal Polysaccharide Vaccine for Adults with Immunocompromising Conditions: Recommendations of the Advisory Committee on Immunization Practices (ACIP). 2012. Accessed June 28, 2024 at: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6140a4.htm
  • 103 Tomczyk S, Bennett NM, Stoecker C. et al; Centers for Disease Control and Prevention (CDC). Use of 13-valent pneumococcal conjugate vaccine and 23-valent pneumococcal polysaccharide vaccine among adults aged ≥65 years: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Morb Mortal Wkly Rep 2014; 63 (37) 822-825
  • 104 Jackson LA, Gurtman A, van Cleeff M. et al. Influence of initial vaccination with 13-valent pneumococcal conjugate vaccine or 23-valent pneumococcal polysaccharide vaccine on anti-pneumococcal responses following subsequent pneumococcal vaccination in adults 50 years and older. Vaccine 2013; 31 (35) 3594-3602
  • 105 Domenech M, Damián D, Ardanuy C, Liñares J, Fenoll A, García E. Emerging, non-PCV13 serotypes 11A and 35B of Streptococcus pneumoniae show high potential for biofilm formation in vitro. PLoS One 2015; 10 (04) e0125636
  • 106 Kaplan SL, Barson WJ, Lin PL. et al. Early trends for invasive pneumococcal infections in children after the introduction of the 13-valent pneumococcal conjugate vaccine. Pediatr Infect Dis J 2013; 32 (03) 203-207
  • 107 Bogaert D, Hermans PWM, Adrian PV, Rümke HC, de Groot R. Pneumococcal vaccines: an update on current strategies. Vaccine 2004; 22 (17-18): 2209-2220
  • 108 Nabors GS, Braun PA, Herrmann DJ. et al. Immunization of healthy adults with a single recombinant pneumococcal surface protein A (PspA) variant stimulates broadly cross-reactive antibodies to heterologous PspA molecules. Vaccine 2000; 18 (17) 1743-1754
  • 109 Wang S, Li Y, Shi H. et al. Immune responses to recombinant pneumococcal PsaA antigen delivered by a live attenuated Salmonella vaccine. Infect Immun 2010; 78 (07) 3258-3271
  • 110 Moffitt K, Malley R. Rationale and prospects for novel pneumococcal vaccines. Hum Vaccin Immunother 2016; 12 (02) 383-392
  • 111 Verhoeven D, Xu Q, Pichichero ME. Vaccination with a Streptococcus pneumoniae trivalent recombinant PcpA, PhtD and PlyD1 protein vaccine candidate protects against lethal pneumonia in an infant murine model. Vaccine 2014; 32 (26) 3205-3210
  • 112 Xu Q, Pryharski K, Pichichero ME. Trivalent pneumococcal protein vaccine protects against experimental acute otitis media caused by Streptococcus pneumoniae in an infant murine model. Vaccine 2017; 35 (02) 337-344
  • 113 Ricci S, Janulczyk R, Gerlini A. et al. The factor H-binding fragment of PspC as a vaccine antigen for the induction of protective humoral immunity against experimental pneumococcal sepsis. Vaccine 2011; 29 (46) 8241-8249
  • 114 Hernani MdeL, Ferreira PCD, Ferreira DM, Miyaji EN, Ho PL, Oliveira MLS. Nasal immunization of mice with Lactobacillus casei expressing the pneumococcal surface protein C primes the immune system and decreases pneumococcal nasopharyngeal colonization in mice. FEMS Immunol Med Microbiol 2011; 62 (03) 263-272
  • 115 Mann B, Orihuela C, Antikainen J. et al. Multifunctional role of choline binding protein G in pneumococcal pathogenesis. Infect Immun 2006; 74 (02) 821-829
  • 116 Kaur R, Surendran N, Ochs M, Pichichero ME. Human antibodies to PhtD, PcpA, and Ply reduce adherence to human lung epithelial cells and murine nasopharyngeal colonization by Streptococcus pneumoniae . Infect Immun 2014; 82 (12) 5069-5075
  • 117 André GO, Borges MT, Assoni L. et al. Protective role of PhtD and its amino and carboxyl fragments against pneumococcal sepsis. Vaccine 2021; 39 (27) 3626-3632
  • 118 Denoël P, Godfroid F, Hermand P, Verlant V, Poolman J. Combined protective effects of anti-PhtD and anti-pneumococcal polysaccharides. Vaccine 2011; 29 (38) 6451-6453
  • 119 Hammitt LL, Campbell JC, Borys D. et al. Efficacy, safety and immunogenicity of a pneumococcal protein-based vaccine co-administered with 13-valent pneumococcal conjugate vaccine against acute otitis media in young children: a phase IIb randomized study. Vaccine 2019; 37 (51) 7482-7492
  • 120 Odutola A, Ota MOC, Antonio M. et al. Efficacy of a novel, protein-based pneumococcal vaccine against nasopharyngeal carriage of Streptococcus pneumoniae in infants: a phase 2, randomized, controlled, observer-blind study. Vaccine 2017; 35 (19) 2531-2542
  • 121 Kamtchoua T, Bologa M, Hopfer R. et al. Safety and immunogenicity of the pneumococcal pneumolysin derivative PlyD1 in a single-antigen protein vaccine candidate in adults. Vaccine 2013; 31 (02) 327-333
  • 122 Leroux-Roels G, Maes C, De Boever F, Traskine M, Rüggeberg JU, Borys D. Safety, reactogenicity and immunogenicity of a novel pneumococcal protein-based vaccine in adults: a phase I/II randomized clinical study. Vaccine 2014; 32 (50) 6838-6846
  • 123 Masomian M, Ahmad Z, Gew LT, Poh CL. Development of next generation Streptococcus pneumoniae vaccines conferring broad protection. Vaccines (Basel) 2020; 8 (01) 132
  • 124 Prymula R, Pazdiora P, Traskine M, Rüggeberg JU, Borys D. Safety and immunogenicity of an investigational vaccine containing two common pneumococcal proteins in toddlers: a phase II randomized clinical trial. Vaccine 2014; 32 (25) 3025-3034
  • 125 Paton JC, Rowan-Kelly B, Ferrante A. Activation of human complement by the pneumococcal toxin pneumolysin. Infect Immun 1984; 43 (03) 1085-1087
  • 126 Kadioglu A, Coward W, Colston MJ, Hewitt CRA, Andrew PW. CD4-T-lymphocyte interactions with pneumolysin and pneumococci suggest a crucial protective role in the host response to pneumococcal infection. Infect Immun 2004; 72 (05) 2689-2697
  • 127 Entwisle C, Hill S, Pang Y. et al. Safety and immunogenicity of a novel multiple antigen pneumococcal vaccine in adults: a phase 1 randomised clinical trial. Vaccine 2017; 35 (51) 7181-7186
  • 128 Brooks WA, Chang LJ, Sheng X, Hopfer R. PPR02 Study Team. Safety and immunogenicity of a trivalent recombinant PcpA, PhtD, and PlyD1 pneumococcal protein vaccine in adults, toddlers, and infants: a phase I randomized controlled study. Vaccine 2015; 33 (36) 4610-4617
  • 129 Suárez I, Fünger SM, Kröger S, Rademacher J, Fätkenheuer G, Rybniker J. The diagnosis and treatment of tuberculosis. Dtsch Arztebl Int 2019; 116 (43) 729-735
  • 130 Dockrell HM, Butkeviciute E. Can what have we learnt about BCG vaccination in the last 20 years help us to design a better tuberculosis vaccine?. Vaccine 2022; 40 (11) 1525-1533
  • 131 Schito M, Migliori GB, Fletcher HA. et al. Perspectives on advances in tuberculosis diagnostics, drugs, and vaccines. Clin Infect Dis 2015; 61 Suppl 3 (Suppl. 03) S102-S118
  • 132 O'Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ, Berry MPR. The immune response in tuberculosis. Annu Rev Immunol 2013; 31: 475-527
  • 133 Gopal R, Monin L, Slight S. et al. Unexpected role for IL-17 in protective immunity against hypervirulent Mycobacterium tuberculosis HN878 infection. PLoS Pathog 2014; 10 (05) e1004099
  • 134 Chen CY, Huang D, Wang RC. et al. A critical role for CD8 T cells in a nonhuman primate model of tuberculosis. PLoS Pathog 2009; 5 (04) e1000392
  • 135 Srivastava S, Dey S, Mukhopadhyay S. Vaccines against tuberculosis: where are we now?. Vaccines (Basel) 2023; 11 (05) 1013
  • 136 Tameris M, Mearns H, Penn-Nicholson A. et al; MTBVAC Clinical Trial Team. Live-attenuated Mycobacterium tuberculosis vaccine MTBVAC versus BCG in adults and neonates: a randomised controlled, double-blind dose-escalation trial. Lancet Respir Med 2019; 7 (09) 757-770
  • 137 Backus KM, Dolan MA, Barry CS. et al. The three Mycobacterium tuberculosis antigen 85 isoforms have unique substrates and activities determined by non-active site regions. J Biol Chem 2014; 289 (36) 25041-25053
  • 138 Jenum S, Tonby K, Rueegg CS. et al. A phase I/II randomized trial of H56:IC31 vaccination and adjunctive cyclooxygenase-2-inhibitor treatment in tuberculosis patients. Nat Commun 2021; 12 (01) 6774
  • 139 Choi YH, Kang YA, Park KJ. et al. Safety and immunogenicity of the ID93 + GLA-SE tuberculosis vaccine in BCG-vaccinated healthy adults: a randomized, double-blind, placebo-controlled phase 2 trial. Infect Dis Ther 2023; 12 (06) 1605-1624
  • 140 Norrby M, Vesikari T, Lindqvist L. et al. Safety and immunogenicity of the novel H4:IC31 tuberculosis vaccine candidate in BCG-vaccinated adults: two phase I dose escalation trials. Vaccine 2017; 35 (12) 1652-1661
  • 141 Tkachuk AP, Bykonia EN, Popova LI. et al. Safety and immunogenicity of the GamTBvac, the recombinant subunit tuberculosis vaccine candidate: a phase II, multi-center, double-blind, randomized, placebo-controlled study. Vaccines (Basel) 2020; 8 (04) 652
  • 142 Van Der Meeren O, Hatherill M, Nduba V. et al. Phase 2b controlled trial of M72/AS01E vaccine to prevent tuberculosis. N Engl J Med 2018; 379 (17) 1621-1634
  • 143 Tang C, Yamada H, Shibata K. et al. Efficacy of recombinant bacille Calmette-Guérin vaccine secreting interleukin-15/antigen 85B fusion protein in providing protection against Mycobacterium tuberculosis . J Infect Dis 2008; 197 (09) 1263-1274
  • 144 Grode L, Seiler P, Baumann S. et al. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guérin mutants that secrete listeriolysin. J Clin Invest 2005; 115 (09) 2472-2479
  • 145 Nieuwenhuizen NE, Kulkarni PS, Shaligram U. et al. The recombinant Bacille Calmette-Guérin vaccine VPM1002: ready for clinical efficacy testing. Front Immunol 2017; 8: 1147
  • 146 Stylianou E, Griffiths KL, Poyntz HC. et al. Improvement of BCG protective efficacy with a novel chimpanzee adenovirus and a modified vaccinia Ankara virus both expressing Ag85A. Vaccine 2015; 33 (48) 6800-6808
  • 147 Shurygina AP, Zabolotnykh N, Vinogradova T. et al. Preclinical evaluation of TB/FLU-04L-an intranasal influenza vector-based boost vaccine against tuberculosis. Int J Mol Sci 2023; 24 (08) 7439
  • 148 Xue T, Stavropoulos E, Yang M. et al. RNA encoding the MPT83 antigen induces protective immune responses against Mycobacterium tuberculosis infection. Infect Immun 2004; 72 (11) 6324-6329
  • 149 Al Tbeishat H. Novel In Silico mRNA vaccine design exploiting proteins of M. tuberculosis that modulates host immune responses by inducing epigenetic modifications. Sci Rep 2022; 12 (01) 4645
  • 150 Ates LS. New insights into the mycobacterial PE and PPE proteins provide a framework for future research. Mol Microbiol 2020; 113 (01) 4-21
  • 151 Delogu G, Brennan MJ. Comparative immune response to PE and PE_PGRS antigens of Mycobacterium tuberculosis . Infect Immun 2001; 69 (09) 5606-5611
  • 152 Singh SK, Tripathi DK, Singh PK, Sharma S, Srivastava KK. Protective and survival efficacies of Rv0160c protein in murine model of Mycobacterium tuberculosis . Appl Microbiol Biotechnol 2013; 97 (13) 5825-5837
  • 153 Sable SB, Posey JE, Scriba TJ. Tuberculosis vaccine development: progress in clinical evaluation. Clin Microbiol Rev 2019; 33 (01) e00100-e00119
  • 154 Lindestam Arlehamn CS, McKinney DM, Carpenter C. et al. A Quantitative analysis of complexity of human pathogen-specific CD4 t cell responses in healthy m. tuberculosis infected South Africans. PLoS Pathog 2016; 12 (07) e1005760
  • 155 Dijkman K, Sombroek CC, Vervenne RAW. et al. Prevention of tuberculosis infection and disease by local BCG in repeatedly exposed rhesus macaques. Nat Med 2019; 25 (02) 255-262
  • 156 Arbues A, Aguilo JI, Gonzalo-Asensio J. et al. Construction, characterization and preclinical evaluation of MTBVAC, the first live-attenuated M. tuberculosis-based vaccine to enter clinical trials. Vaccine 2013; 31 (42) 4867-4873
  • 157 Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: an audacious pathogen with an adaptable arsenal of virulence factors. Int J Mol Sci 2021; 22 (06) 3128
  • 158 Moradali MF, Ghods S, Rehm BHA. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 2017; 7: 39
  • 159 Killough M, Rodgers AM, Ingram RJ. Pseudomonas aeruginosa: recent advances in vaccine development. Vaccines (Basel) 2022; 10 (07) 1100
  • 160 Sainz-Mejías M, Jurado-Martín I, McClean S. Understanding Pseudomonas aeruginosa-host interactions: the ongoing quest for an efficacious vaccine. Cells 2020; 9 (12) 2617
  • 161 Reig S, Le Gouellec A, Bleves S. What is new in the anti-Pseudomonas aeruginosa clinical development pipeline since the 2017 WHO alert?. Front Cell Infect Microbiol 2022; 12: 909731
  • 162 Wu W, Huang J, Duan B. et al. Th17-stimulating protein vaccines confer protection against Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med 2012; 186 (05) 420-427
  • 163 Miquel-Clopés A, Bentley EG, Stewart JP, Carding SR. Mucosal vaccines and technology. Clin Exp Immunol 2019; 196 (02) 205-214
  • 164 Merakou C, Schaefers MM, Priebe GP. Progress toward the elusive Pseudomonas aeruginosa vaccine. Surg Infect (Larchmt) 2018; 19 (08) 757-768
  • 165 Shaikh MOF, Schaefers MM, Merakou C. et al. Multicomponent Pseudomonas aeruginosa vaccines eliciting Th17 cells and functional antibody responses confer enhanced protection against experimental acute pneumonia in mice. Infect Immun 2022; 90 (10) e0020322
  • 166 Banadkoki AZ, Keshavarzmehr M, Afshar Z. et al. Protective effect of pilin protein with alum+naloxone adjuvant against acute pulmonary Pseudomonas aeruginosa infection. Biologicals 2016; 44 (05) 367-373
  • 167 Krause A, Whu WZ, Xu Y, Joh J, Crystal RG, Worgall S. Protective anti-Pseudomonas aeruginosa humoral and cellular mucosal immunity by AdC7-mediated expression of the P. aeruginosa protein OprF. Vaccine 2011; 29 (11) 2131-2139
  • 168 DiGiandomenico A, Rao J, Goldberg JB. Oral vaccination of BALB/c mice with Salmonella enterica serovar typhimurium expressing Pseudomonas aeruginosa O antigen promotes increased survival in an acute fatal pneumonia model. Infect Immun 2004; 72 (12) 7012-7021
  • 169 Mutharia LM, Hancock RE. Surface localization of Pseudomonas aeruginosa outer membrane porin protein F by using monoclonal antibodies. Infect Immun 1983; 42 (03) 1027-1033
  • 170 Mutharia LM, Nicas TI, Hancock REW. Outer membrane proteins of Pseudomonas aeruginosa serotype strains. J Infect Dis 1982; 146 (06) 770-779
  • 171 Gilleland Jr HE, Parker MG, Matthews JM, Berg RD. Use of a purified outer membrane protein F (porin) preparation of Pseudomonas aeruginosa as a protective vaccine in mice. Infect Immun 1984; 44 (01) 49-54
  • 172 von Specht BU, Strigl G, Ehret W, Brendel W. Protective effect of an outer membrane vaccine against Pseudomonas aeruginosa infection. Infection 1987; 15 (05) 408-412
  • 173 von Specht BU, Gabelsberger J, Knapp B. et al. Immunogenic efficacy of differently produced recombinant vaccines candidates against Pseudomonas aeruginosa infections. J Biotechnol 2000; 83 (1-2): 3-12
  • 174 Baumann U, Mansouri E, von Specht BU. Recombinant OprF-OprI as a vaccine against Pseudomonas aeruginosa infections. Vaccine 2004; 22 (07) 840-847
  • 175 Bianconi I, Alcalá-Franco B, Scarselli M. et al. Genome-based approach delivers vaccine candidates against Pseudomonas aeruginosa . Front Immunol 2019; 9: 3021
  • 176 Bahey-El-Din M, Mohamed SA, Sheweita SA, Haroun M, Zaghloul TI. Recombinant N-terminal outer membrane porin (OprF) of Pseudomonas aeruginosa is a promising vaccine candidate against both P. aeruginosa and some strains of Acinetobacter baumannii . Int J Med Microbiol 2020; 310 (03) 151415
  • 177 Rello J, Krenn CG, Locker G. et al. A randomized placebo-controlled phase II study of a Pseudomonas vaccine in ventilated ICU patients. Crit Care 2017; 21 (01) 22
  • 178 Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. Nat Med 2013; 19 (12) 1597-1608
  • 179 He P, Zou Y, Hu Z. Advances in aluminum hydroxide-based adjuvant research and its mechanism. Hum Vaccin Immunother 2015; 11 (02) 477-488
  • 180 Jazani NH, Parsania S, Sohrabpour M, Mazloomi E, Karimzad M, Shahabi S. Naloxone and alum synergistically augment adjuvant activities of each other in a mouse vaccine model of Salmonella typhimurium infection. Immunobiology 2011; 216 (06) 744-751
  • 181 Mauch RM, Jensen PØ, Moser C, Levy CE, Høiby N. Mechanisms of humoral immune response against Pseudomonas aeruginosa biofilm infection in cystic fibrosis. J Cyst Fibros 2018; 17 (02) 143-152
  • 182 Żelechowska P, Różalska S, Wiktorska M, Brzezińska-Błaszczyk E, Agier J. Curdlan stimulates tissue mast cells to synthesize pro-inflammatory mediators, generate ROS, and migrate via Dectin-1 receptor. Cell Immunol 2020; 351: 104079
  • 183 Schaefers MM, Duan B, Mizrahi B. et al. PLGA-encapsulation of the Pseudomonas aeruginosa PopB vaccine antigen improves Th17 responses and confers protection against experimental acute pneumonia. Vaccine 2018; 36 (46) 6926-6932
  • 184 Lang AB, Schaad UB, Rüdeberg A. et al. Effect of high-affinity anti-Pseudomonas aeruginosa lipopolysaccharide antibodies induced by immunization on the rate of Pseudomonas aeruginosa infection in patients with cystic fibrosis. J Pediatr 1995; 127 (05) 711-717
  • 185 Lang AB, Rüdeberg A, Schöni MH, Que JU, Fürer E, Schaad UB. Vaccination of cystic fibrosis patients against Pseudomonas aeruginosa reduces the proportion of patients infected and delays time to infection. Pediatr Infect Dis J 2004; 23 (06) 504-510
  • 186 Lazar H, Horn MP, Zuercher AW. et al. Pharmacokinetics and safety profile of the human anti-Pseudomonas aeruginosa serotype O11 immunoglobulin M monoclonal antibody KBPA-101 in healthy volunteers. Antimicrob Agents Chemother 2009; 53 (08) 3442-3446
  • 187 Tabor DE, Oganesyan V, Keller AE. et al. Pseudomonas aeruginosa PcrV and Psl, the molecular targets of bispecific antibody MEDI3902, are conserved among diverse global clinical isolates. J Infect Dis 2018; 218 (12) 1983-1994
  • 188 Ali SO, Yu XQ, Robbie GJ. et al. Phase 1 study of MEDI3902, an investigational anti-Pseudomonas aeruginosa PcrV and Psl bispecific human monoclonal antibody, in healthy adults. Clin Microbiol Infect 2019; 25 (05) 629.e1-629.e6
  • 189 Chastre J, François B, Bourgeois M. et al; COMBACTE-MAGNET EVADE Study Group. Safety, efficacy, and pharmacokinetics of gremubamab (MEDI3902), an anti-Pseudomonas aeruginosa bispecific human monoclonal antibody, in P. aeruginosa-colonised, mechanically ventilated intensive care unit patients: a randomised controlled trial. Crit Care 2022; 26 (01) 355
  • 190 João C, Negi VS, Kazatchkine MD, Bayry J, Kaveri SV. Passive serum therapy to immunomodulation by IVIG: a fascinating journey of antibodies. J Immunol 2018; 200 (06) 1957-1963
  • 191 Huang J, Doria-Rose NA, Longo NS. et al. Isolation of human monoclonal antibodies from peripheral blood B cells. Nat Protoc 2013; 8 (10) 1907-1915
  • 192 Wardemann H, Busse CE. Expression cloning of antibodies from single human B cells. In: Küppers R. ed. Lymphoma. Methods in Molecular Biology. Springer New York; 2019:vol. 1956; pp. 105–125
  • 193 Andreano E, Nicastri E, Paciello I. et al. Extremely potent human monoclonal antibodies from COVID-19 convalescent patients. Cell 2021; 184 (07) 1821-1835.e16
  • 194 Chen HC, Pan YL, Chen Y. et al. Monoclonal antibodies as a therapeutic strategy against multidrug-resistant bacterial infections in a post-COVID-19 era. Life (Basel) 2024; 14 (02) 246
  • 195 Rappuoli R, Bottomley MJ, D'Oro U, Finco O, De Gregorio E. Reverse vaccinology 2.0: Human immunology instructs vaccine antigen design. J Exp Med 2016; 213 (04) 469-481
  • 196 Kabanova A, Perez L, Lilleri D. et al. Antibody-driven design of a human cytomegalovirus gHgLpUL128L subunit vaccine that selectively elicits potent neutralizing antibodies. Proc Natl Acad Sci U S A 2014; 111 (50) 17965-17970
  • 197 McLellan JS, Chen M, Joyce MG. et al. Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Science 2013; 342 (6158): 592-598
  • 198 Lu LL, Suscovich TJ, Fortune SM, Alter G. Beyond binding: antibody effector functions in infectious diseases. Nat Rev Immunol 2018; 18 (01) 46-61
  • 199 Li J, Bai H, Wang Z. et al. Advancements in organs-on-chips technology for viral disease and anti-viral research. Organs Chip 2023; 5: 100030
  • 200 Goyal G, Prabhala P, Mahajan G. et al. Ectopic lymphoid follicle formation and human seasonal influenza vaccination responses recapitulated in an organ-on-a-chip. Adv Sci (Weinh) 2022; 9 (14) e2103241
  • 201 Gallichan WS, Woolstencroft RN, Guarasci T, McCluskie MJ, Davis HL, Rosenthal KL. Intranasal immunization with CpG oligodeoxynucleotides as an adjuvant dramatically increases IgA and protection against herpes simplex virus-2 in the genital tract. J Immunol 2001; 166 (05) 3451-3457
  • 202 Perrone LA, Ahmad A, Veguilla V. et al. Intranasal vaccination with 1918 influenza virus-like particles protects mice and ferrets from lethal 1918 and H5N1 influenza virus challenge. J Virol 2009; 83 (11) 5726-5734
  • 203 Forbes EK, Sander C, Ronan EO. et al. Multifunctional, high-level cytokine-producing Th1 cells in the lung, but not spleen, correlate with protection against Mycobacterium tuberculosis aerosol challenge in mice. J Immunol 2008; 181 (07) 4955-4964
  • 204 Russell MW, Moldoveanu Z, Ogra PL, Mestecky J. Mucosal immunity in COVID-19: a neglected but critical aspect of SARS-CoV-2 infection. Front Immunol 2020; 11: 611337
  • 205 Lavelle EC, Ward RW. Mucosal vaccines - fortifying the frontiers. Nat Rev Immunol 2022; 22 (04) 236-250
  • 206 Xu F, Newby JM, Schiller JL. et al. Modeling barrier properties of intestinal mucus reinforced with IgG and secretory IgA against motile bacteria. ACS Infect Dis 2019; 5 (09) 1570-1580
  • 207 Ben Mkaddem S, Rossato E, Heming N, Monteiro RC. Anti-inflammatory role of the IgA Fc receptor (CD89): from autoimmunity to therapeutic perspectives. Autoimmun Rev 2013; 12 (06) 666-669
  • 208 Schenkel JM, Masopust D. Tissue-resident memory T cells. Immunity 2014; 41 (06) 886-897
  • 209 Luangrath MA, Schmidt ME, Hartwig SM, Varga SM. Tissue-resident memory t cells in the lungs protect against acute respiratory syncytial virus infection. Immunohorizons 2021; 5 (02) 59-69
  • 210 Hassert M, Harty JT. Tissue resident memory T cells- a new benchmark for the induction of vaccine-induced mucosal immunity. Front Immunol 2022; 13: 1039194
  • 211 Jahnmatz M, Richert L, Al-Tawil N. et al; BPZE1 study team. Safety and immunogenicity of the live attenuated intranasal pertussis vaccine BPZE1: a phase 1b, double-blind, randomised, placebo-controlled dose-escalation study. Lancet Infect Dis 2020; 20 (11) 1290-1301
  • 212 Hassan AO, Feldmann F, Zhao H. et al. A single intranasal dose of chimpanzee adenovirus-vectored vaccine protects against SARS-CoV-2 infection in rhesus macaques. Cell Rep Med 2021; 2 (04) 100230
  • 213 Christensen D, Mortensen R, Rosenkrands I, Dietrich J, Andersen P. Vaccine-induced Th17 cells are established as resident memory cells in the lung and promote local IgA responses. Mucosal Immunol 2017; 10 (01) 260-270
  • 214 Dotiwala F, Upadhyay AK. Next generation mucosal vaccine strategy for respiratory pathogens. Vaccines (Basel) 2023; 11 (10) 1585
  • 215 Plotkin SA. Recent updates on correlates of vaccine-induced protection. Front Immunol 2023; 13: 1081107
  • 216 Kulkarni PS, Hurwitz JL, Simões EAF, Piedra PA. Establishing correlates of protection for vaccine development: considerations for the respiratory syncytial virus vaccine field. Viral Immunol 2018; 31 (02) 195-203
  • 217 Plotkin SA. Correlates of protection induced by vaccination. Clin Vaccine Immunol 2010; 17 (07) 1055-1065
  • 218 Bean R, Giurgea LT, Han A. et al. Mucosal correlates of protection after influenza viral challenge of vaccinated and unvaccinated healthy volunteers. MBio 2024; 15 (02) e0237223
  • 219 Taleb SA, Al-Ansari K, Nasrallah GK. et al. Level of maternal respiratory syncytial virus (RSV) F antibodies in hospitalized children and correlates of protection. Int J Infect Dis 2021; 109: 56-62
  • 220 Stephens LM, Ross KA, Waldstein KA. et al. Prefusion F-based polyanhydride nanovaccine induces both humoral and cell-mediated immunity resulting in long-lasting protection against respiratory syncytial virus. J Immunol 2021; 206 (09) 2122-2134
  • 221 Alfano F, Bigoni T, Caggiano FP, Papi A. Respiratory syncytial virus infection in older adults: an update. Drugs Aging 2024; 41 (06) 487-505
  • 222 Addetia A, Crawford KHD, Dingens A. et al. Neutralizing antibodies correlate with protection from SARS-CoV-2 in humans during a fishery vessel outbreak with a high attack rate. J Clin Microbiol 2020; 58 (11) e02107-e02120
  • 223 Emary KRW, Golubchik T, Aley PK. et al; COVID-19 Genomics UK consortium, AMPHEUS Project, Oxford COVID-19 Vaccine Trial Group. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. Lancet 2021; 397 (10282): 1351-1362
  • 224 Paciello I, Maccari G, Pantano E, Andreano E, Rappuoli R. High-resolution map of the Fc functions mediated by COVID-19-neutralizing antibodies. Proc Natl Acad Sci U S A 2024; 121 (03) e2314730121
  • 225 Wang Z, Lorenzi JCC, Muecksch F. et al. Enhanced SARS-CoV-2 neutralization by dimeric IgA. Sci Transl Med 2021; 13 (577) eabf1555
  • 226 Hope JC, Thom ML, McAulay M. et al. Identification of surrogates and correlates of protection in protective immunity against Mycobacterium bovis infection induced in neonatal calves by vaccination with M. bovis BCG Pasteur and M. bovis BCG Danish. Clin Vaccine Immunol 2011; 18 (03) 373-379
  • 227 Darrah PA, Zeppa JJ, Maiello P. et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature 2020; 577 (7788): 95-102
  • 228 Marcellini V, Piano Mortari E, Fedele G. et al; Pertussis Study Group. Protection against pertussis in humans correlates to elevated serum antibodies and memory B cells. Front Immunol 2017; 8: 1158
  • 229 Andrews NJ, Waight PA, Burbidge P. et al. Serotype-specific effectiveness and correlates of protection for the 13-valent pneumococcal conjugate vaccine: a postlicensure indirect cohort study. Lancet Infect Dis 2014; 14 (09) 839-846
  • 230 van der Woude MW, Bäumler AJ. Phase and antigenic variation in bacteria. Clin Microbiol Rev 2004; 17 (03) 581-611