Subscribe to RSS
DOI: 10.1055/a-2500-7798
Enzymatic Peroxidation in the Chemoenzymatic Synthesis of 13-Oxoverruculogen
Financial support for this work was provided by the National Science Foundation in the form of a CAREER award to C.P.T. (CHE-2338495). B.S. is supported by the National Institute of General Medical Sciences (T32 GM135126). We gratefully acknowledge a grant from the National Institutes of Health (NIH) Shared Instrumentation Program (1S10OD034395).
Abstract
Verruculogens are fumitremorgin alkaloids that contain an eight-membered endoperoxide ring. Due to their unusual structure and bioactivity, there has been much interest in these natural products since their discovery over forty years ago. Similarly, interest in their biosynthesis resulted in the discovery of verruculogen synthase (FtmOx1) that catalyzes endoperoxide formation in these natural products. Herein, we describe our work in this area through the chemoenzymatic synthesis of 13-oxoverruculogen by endoperoxidation of a substrate analogue using FtmOx1.
1 Introduction
2 Pentacyclic Ring Formation
3 Promiscuous Enzymatic Peroxidation
4 Conclusion
Publication History
Received: 21 October 2024
Accepted after revision: 11 December 2024
Accepted Manuscript online:
11 December 2024
Article published online:
20 January 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Coghi P, Yaremenko IA, Prommana P, Radulov PS, Syroeshkin MA, Wu YJ, Gao JY, Gordillo FM, Mok S, Wong VK. W, Uthaipibull C, Terent’ev AO. ChemMedChem 2018; 13: 902
- 2 Vil’ VA, Yaremenko IA, Ilovaisky AI, Terent’ev A. Molecules 2017; 22: 1881
- 3 Tu Y. Nat. Med. 2011; 17: 1217
- 4 Meshnick SR. Int. J. Parasitol. 2002; 32: 1655
- 5a Haynes RK, Cheu K.-W, N’Da D, Coghi P, Monti D. Infect. Disord.: Drug Targets 2013; 13: 217
- 5b Bridgford JL, Xie SC, Cobbold SA, Pasaje CF. A, Herrmann S, Yang T, Gillett DL, Dick LR, Ralph SA, Dogovski C, Spillman NJ, Tilley L. Nat. Commun. 2018; 9: 3801
- 6 For a review on the anticancer properties of artemisinin, see: Slezakova S, Ruda-Kucerova J. Anticancer Res. 2017; 37: 5995
- 7 Cole RJ, Kirksey JW. J. Agric. Food Chem. 1973; 21: 927
- 8 Fayos J, Lokensgard D, Clardy J, Cole RJ, Kirksey JW. J. Am. Chem Soc. 1974; 96: 6785
- 9 Cole RJ, Kirksey JW, Moore JH, Blankenship BR, Diener UL, Davis ND. Appl. Microbiol. 1972; 24: 248
- 10 Li X.-J, Zhang Q, Zhang A.-L, Gao J.-M. J. Agric. Food Chem. 2012; 60: 3424
- 11 Wang F, Fang Y, Zhu T, Zhang M, Lin A, Gu Q, Zhu W. Tetrahedron 2008; 64: 7986
- 12 Rabindran SK, Ross DD, Doyle LA, Yang W, Greenberger LM. Cancer Res. 2000; 47
- 13 Wen W, Yu R. Pharmacogn Rev. 2011; 5: 189
- 14 Hu X, Maimone TJ. J. Am. Chem. Soc. 2014; 136: 5287
- 15 Hu X, Lim P, Fairhurst RM, Maimone TJ. Tetrahedron 2018; 74: 3358
- 16 Varela K, Arman HD, Yoshimoto FK. J. Nat. Prod. 2021; 84: 1967
- 17 Mori T, Abe I. Beilstein J. Org. Chem. 2022; 18: 707
- 18 Steffan N, Grundmann A, Afiyatullov S, Ruan H, Li S.-M. Org. Biol. Chem. 2009; 7: 4082
- 19 Dunham NP, Del Río Pantoja JM, Zhang B, Rajakovich LJ, Allen BD, Krebs C, Boal AK, Bollinger JM. J. Am. Chem. Soc. 2019; 141: 9964
- 20 Lin C.-Y, Hernández AL. M, Laramore TN, Silakov A, Krebs C, Boal AK, Bollinger JM. Jr. ACS Catal. 2022; 12: 6968
- 21 Zhu G, Yan W, Wang X, Cheng R, Naowarojna N, Wang K, Wang J, Song H, Wang Y, Liu H, Xia X, Costelloe CE, Liu X, Zhang L, Liu P. JACS Au 2022; 2: 1686
- 22 Yang J, Singh B, Cohen G, Ting CP. J. Am. Chem. Soc. 2023; 145: 19189
- 23 Feng Y, Holte D, Zoller J, Umemiya S, Simke LR, Baran PS. J. Am. Chem. Soc. 2015; 137: 10160
- 24 Zhang D.-H, Tang X.-Y, Wei Y, Shi M. Chem. Eur. J. 2013; 19: 13668
- 25 Kodato S.-i, Nakagawa M, Hongu M, Kawate T, Hino T. Tetrahedron 1988; 44: 359
- 26 Xi Y.-K, Zhang H, Li R.-X, Kang S.-Y, Li J, Li Y. Chem. Eur. J. 2019; 25: 3005
- 27 Wu L, Wang Z, Cen Y, Wang B, Zhou J. Angew. Chem. Int. Ed. 2022; 61: e202112063
- 28 Tanifuji R, Koketsu K, Takakura M, Asano R, Minami A, Oikawa H, Oguri H. J. Am. Chem. Soc. 2018; 140: 10705
- 29a Li J, Liao H.-J, Tang Y, Huang J.-L, Cha L, Lin T.-S, Lee J.-L, Kurnikov IV, Kurnikova MG, Chang W.-c, Chan NL, Guo Y. J. Am. Chem. Soc. 2020; 142: 6268
- 29b Tang H, Tang Y, Kurnikov IV, Liao H.-J, Chen N.-L, Kurnikova MG, Guo Y, Chang W.-c. ACS Catal. 2021; 11: 7186
- 29c Mader SL. Bräuer A. Groll M, Kaila VR. I. Nat. Commun. 2018; 9: 1168
- 29d Einsiedler M, Jamieson CS, Maskeri MA, Houk KN, Gulder TA. M. Angew. Chem. Int. Ed. 2021; 60: 8297
- 29e Einsiedler M, Gulder TA. M. Nat. Commun. 2023; 14: 3658
- 30 Cheng L, Li D, Mai BK, Bo Z, Cheng L, Liu P, Yang Y. Science 2023; 381: 444
- 31a Doyon TJ, Perkins JC, Dockrey SA. B, Romero EO, Skinner KC, Zimmerman PM, Narayan AR. H. J. Am. Chem. Soc. 2019; 141: 20269
- 31b Romero EO, Perkins JC, Burch JE, Delgadillo DA, Nelson HM, Narayan AR. H. Org. Lett. 2023; 25: 1547
- 32a Zwick CR. III, Sosa MB, Renata H. Angew. Chem. Int. Ed. 2019; 58: 18854
- 32b Zwick CR. III, Renata H. J. Am. Chem. Soc. 2018; 140: 1165
- 33 Brandenberg OF, Chen K, Arnold FH. J. Am. Chem. Soc. 2019; 141: 8989
- 34 Fasan R. ACS Catal. 2012; 2: 647