Subscribe to RSS
DOI: 10.1055/a-2501-4247
Transition-Metal-Catalyzed Asymmetric Reduction of 2-Pyridine Ketones
Abstract
This graphical review provides a concise overview of transition-metal-catalyzed asymmetric reduction of 2-pyridine ketones to produce enantiopure chiral 2-pyridine aryl/alkyl alcohols, which are present in many chiral ligands and pharmaceuticals. Key methods include metal-catalyzed hydrogenation, transfer hydrogenation, and hydrosilylation, with a focus on sustainable catalysts like iron and manganese. This review serves as a foundation for future advancements in sustainable and enantioselective keto group reductions.
#
Key words
asymmetric reduction - ketones - transfer hydrogenation - hydrogenation - hydrosilylation - iron catalysisBiosketches
Vidhul Vasudevan was born in Kerala, India, and obtained his BS-MS dual degree in chemistry from the Indian Institute of Science Education and Research, Kolkata, India. He was a MITACS Globalink Intern at Université Laval (Québec, Canada) under the supervision of Prof. Thierry Ollevier during the summer of 2023. His research was focused on the development of new bipyridine-based chiral ligands. Currently, he is a Ph.D. student at McGill University (Montréal), Canada.
Harishankar M. S was born in Kerala, India, and obtained his BS-MS dual degree in chemistry from the Indian Institute of Science Education and Research, Bhopal, India. He was a MITACS Globalink Intern at Université Laval (Québec, Canada) under the supervision of Prof. Thierry Ollevier during the summer of 2023, where he worked on the development of new bipyridine-based chiral ligands.
Thierry Ollevier was born in Brussels and obtained his B.Sc. (1991) and Ph.D. (1997) at the Université of Namur (Belgium) under A. Krief, and was a research associate at the Université catholique de Louvain (Belgium) under I. E. Markó (1997), a NATO postdoctoral fellow at Stanford University under B. M. Trost (1998–2000), then a postdoctoral fellow at the Université de Montréal under A. B. Charette (2000–2001). After an assistant professor appointment (2001) at Université Laval (Québec, Canada), he became associate professor (2006) and is currently a full professor. Current research in his group aims at designing novel catalysts, developing catalytic reactions, and applying these methods to chemical synthesis. He is active in the areas of iron catalysis, ligand design, asymmetric catalysis, fluorine chemistry, diazo and diazirine chemistry, flow chemistry, and bismuth chemistry. He has published more than 85 papers and 35 encyclopedia articles and book chapters. He served as an Associate Editor of RSC Advances from 2015 to 2022 and was admitted as a Fellow of the Royal Society of Chemistry (2016). After 5 years served as an Advisory Board member of SynOpen, he was appointed as Editor-in-Chief of SynOpen in 2023.
The development of catalytic methods for the asymmetric reduction of keto groups, particularly in 2-pyridine ketones, has garnered considerable interest due to the transformative potential of these reactions in the synthesis of enantiomerically pure compounds. Enantiopure chiral 2-pyridine aryl/alkyl alcohols are not only essential intermediates in creating chiral ligands, such as Bolm’s ligand, but are also foundational in the synthesis of complex, stereochemically defined molecules in fields like pharmaceuticals and materials science. As a result, there has been substantial effort to design catalysts that facilitate these reductions with high enantioselectivity, efficiency, and versatility.
A wide array of catalytic approaches has emerged for the asymmetric reduction of 2-pyridine ketones, utilizing transition metals such as iron, manganese, ruthenium, copper, rhodium, and iridium. These systems often differ significantly in their mechanistic pathways, with some involving direct hydrogenation, others employing transfer hydrogenation, and others relying on hydrosilylation. Each method offers unique advantages, yet also presents challenges related to reaction scope, operational simplicity, cost, scalability, and environmental impact, with green chemistry principles driving much of the recent innovation in this field.
Despite these advancements, there remain open questions and unsolved challenges, particularly in the quest for more sustainable, non-precious metal catalysts and methods that maximize atom economy. Furthermore, the sheer pace of development in this area can sometimes obscure which transformations have reached maturity and which require further optimization or exploration. This graphical review seeks to clarify these developments, providing a structured overview of current catalytic systems for asymmetric reduction of 2-pyridine ketones. By highlighting well-established techniques alongside emerging approaches, it aims to illuminate future directions for research, particularly in the context of eco-friendly synthetic methodologies and the expanding role of iron-based catalysis in asymmetric synthesis.
#
Conflict of Interest
The authors declare no conflict of interest.
-
References
- 1a Zhang YM, Liu P, Zhang HL. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 2008; 38: 778
- 1b Murayama H, Heike Y, Higashida K, Shimizu Y, Yodsin N, Wongnongwa Y, Jungsuttiwong S, Mori S, Sawamura M. Adv. Synth. Catal. 2020; 362: 4655
- 1c Liu Q, Wang C, Zhou H, Wang B, Lv J, Cao L, Fu Y. Org. Lett. 2018; 20: 971
- 1d El-Asaad B, Guicheret B, Métay E, Karamé I, Lemaire M. J. Mol. Catal. A: Chem. 2016; 411: 196
- 1e Bigler R, Mezzetti A. Org. Process Res. Dev. 2016; 20: 253
- 1f Smith SA, Morris RH. Synthesis 2015; 47: 1775
- 2a Bigler R, Huber R, Mezzetti A. Angew. Chem. Int. Ed. 2015; 54: 5171
- 2b Bigler R, Huber R, Stöckli M, Mezzetti A. ACS Catal. 2016; 6: 6455
- 2c Naik A, Maji T, Reiser O. Chem. Commun. 2010; 46: 4475
- 2d Zuo W, Lough AJ, Li YF, Morris RH. Science 2013; 342: 1080
- 2e Jiang L, Wu TF, Chen YC, Zhu J, Deng JG. Org. Biomol. Chem. 2006; 4: 3319
- 2f Deshpande SH, Shende VS, Shingote SK, Chakravarty D, Puranik VG, Chaudhari RV, Kelkar AA. RSC Adv. 2015; 5: 51722
- 2g Wang F, Yang T, Wu T, Zheng LS, Yin C, Shi Y, Ye XY, Chen GQ, Zhang X. J. Am. Chem. Soc. 2021; 143: 2477
- 2h Zheng LS, Férard C, Phansavath P, Ratovelomanana-Vidal V. Chem. Commun. 2018; 54: 283
- 2i Echeverria PG, Férard C, Phansavath P, Ratovelomanana-Vidal V. Catal. Commun. 2015; 62: 95
- 3a Wu X, Li X, Zanotti-Gerosa A, Pettman A, Liu J, Mills AJ, Xiao J. Chem. Eur. J. 2008; 14: 2209
- 3b Baratta W, Chelucci G, Magnolia S, Siega K, Rigo P. Chem. Eur. J. 2009; 15: 726
- 3c Kwong HL, Lee WS, Lai TS, Wong WT. Inorg. Chem. Commun. 1999; 2: 66
- 3d Johnson TC, Totty WG, Wills M. Org. Lett. 2012; 14: 5230
- 3e Chen F, Jin MY, Wang DZ, Xu C, Wang J, Xing X. ACS Catal. 2022; 12: 14429
- 4a Baratta W, Benedetti F, Del Zotto A, Fanfoni L, Felluga F, Magnolia S, Putignano E, Rigo P. Organometallics 2010; 29: 3563
- 4b Lauzon S, Schouwey L, Ollevier T. Org. Lett. 2022; 24: 1116
- 4c Ishikawa S, Hamada T, Manabe K, Kobayashi S. Synthesis 2005; 2176
- 4d Everaere K, Carpentier JF, Mortreux A, Bulliard M. Tetrahedron: Asymmetry 1999; 10: 4083
- 4e Kišić A, Stephan M, Mohar B. Adv. Synth. Catal. 2015; 357: 2540
- 4f Wang B, Zhou H, Lu G, Liu Q, Jiang X. Org. Lett. 2017; 19: 2094
- 4g Chen F, He D, Chen L, Chang X, Wang DZ, Xu C, Xing X. ACS Catal. 2019; 9: 5562
- 4h He D, Xu X, Lu Y, Zhou MJ, Xing X. Org. Lett. 2020; 22: 8458
- 4i Agac A, Karakaya I, Sahin I, Emir S, Karabuga S, Ulukanli S. J. Organomet. Chem. 2016; 819: 189
- 4j Kucukturkmen C, Agac A, Eren A, Karakaya I, Aslantas M, Celik O, Ulukanli S, Karabuga S. Catal. Commun. 2016; 74: 122
- 5a Nordin SJ, Roth P, Tarnai T, Alonso DA, Brandt P, Andersson PG. Chem. Eur. J. 2001; 7: 1431
- 5b Utepova IA, Serebrennikova PO, Streltsova MS, Musikhina AA, Fedorchenko TG, Chupakhin ON, Antonchick AP. Molecules 2018; 23: 1311
- 5c Shen WY, Li YY, Dong ZR, Gao JX. Synthesis 2009; 2413
- 5d Xu X, You Y, Jin MY, Meng FJ, Xu C, Xing X. Sci. China Chem. 2023; 66: 1443
- 5e Okano K, Murata K, Ikariya T. Tetrahedron Lett. 2000; 41: 9277
- 5f Morris DJ, Hayes AM, Wills M. J. Org. Chem. 2006; 71: 7035
- 5g Cheung FK, Lin C, Minissi F, Crivillé AL, Graham MA, Fox DJ, Wills M. Org. Lett. 2007; 9: 4659
- 5h Bednářová E, Dračínský M, Malatinec Š, Císařová I, Lamaty F, Kotora M. Adv. Synth. Catal. 2018; 360: 2869
- 5i Bouzid S, Marcoux A, Ollevier T. Chem. Eur. J. 2024; 30: e202402449
- 6a Yang XH, Xie JH, Liu WP, Zhou QL. Angew. Chem. Int. Ed. 2013; 52: 7833
- 6b Ma J, Li W, He L, Lv H. Chem. Commun. 2022; 58: 5841
- 6c Li C, Zhang L, Du Y, Zheng XL, Fu HY, Chen H, Li RX. Catal. Commun. 2012; 28: 5
- 6d Li C, Zhang L, Zheng C, Zheng X, Fu H, Chen H, Li R. Tetrahedron: Asymmetry 2014; 25: 821
- 6e Wu W, Liu S, Duan M, Tan X, Chen C, Xie Y, Lan Y, Dong XQ, Zhang X. Org. Lett. 2016; 18: 2938
- 6f Wu W, You C, Yin C, Liu Y, Dong XQ, Zhang X. Org. Lett. 2017; 19: 2548
- 6g Nian S, Ling F, Chen J, Wang Z, Shen H, Yi X, Yang YF, She Y, Zhong W. Org. Lett. 2019; 21: 5392
- 6h Yin C, Zhang R, Pan Y, Gao S, Ding X, Bai ST, Lang Q, Zhang X. J. Org. Chem. 2024; 89: 527
- 6i Hu Y, Wu W, Dong XQ, Zhang X. Org. Chem. Front. 2017; 4: 1499
- 7a Wu W, Zhao N, Liu Y, Du S, Wang X, Mo W, Yan X, Xu C, Zhou Y, Ji B. Org. Lett. 2023; 25: 8845
- 7b Yin C, Dong XQ, Zhang X. Adv. Synth. Catal. 2018; 360: 4319
- 7c Lagaditis PO, Sues PE, Sonnenberg JF, Wan KY, Lough AJ, Morris RH. J. Am. Chem. Soc. 2014; 136: 1367
- 7d Li Y, Yu S, Wu X, Xiao J, Shen W, Dong Z, Gao J. J. Am. Chem. Soc. 2014; 136: 4031
- 7e He J, Mao W, Lin J, Wu Y, Chen L, Yang P, Song D, Zhu P, Zhong W, Ling F. Org. Chem. Front. 2023; 10: 3321
- 7f Zhang L, Tang Y, Han Z, Ding K. Angew. Chem. Int. Ed. 2019; 58: 4973
- 7g Seo CS, Tsui BT, Gradiski MV, Smith SA, Morris RH. Catal. Sci. Technol. 2021; 11: 3153
- 7h Ling F, Chen J, Nian S, Hou H, Yi X, Wu F, Xu M, Zhong W. Synlett 2020; 31: 285
- 8a Widegren MB, Harkness GJ, Slawin AM, Cordes DB, Clarke ML. Angew. Chem. Int. Ed. 2017; 56: 5825
- 8b Yang H, Huo N, Yang P, Pei H, Lv H, Zhang X. Org. Lett. 2015; 17: 4144
- 8c Arenas I, Boutureira O, Matheu MI, Díaz Y, Castillón S. Eur. J. Org. Chem. 2015; 3666
- 8d Ohkuma T, Koizumi M, Yoshida M, Noyori R. Org. Lett. 2000; 2: 1749
- 8e Maerten E, Agbossou-Niedercorn F, Castanet Y, Mortreux A. Tetrahedron 2008; 64: 8700
- 8f Tao X, Li W, Ma X, Li X, Fan W, Xie X, Ayad T, Ratovelomanana-Vidal V, Zhang Z. J. Org. Chem. 2012; 77: 612
- 9a Yurino T, Nishihara R, Yasuda T, Yang S, Utsumi N, Katayama T, Arai N, Ohkuma T. Org. Lett. 2024; 26: 2872
- 9b Yamada M, Azuma K, Yamano M. Org. Lett. 2021; 23: 3364
- 9c Burk MJ, Hems W, Herzberg D, Malan C, Zanotti-Gerosa A. Org. Lett. 2000; 2: 1749
- 9d Chen CY, Reamer RA, Chilenski JR, McWilliams CJ. Org. Lett. 2003; 5: 5039
- 9e Yu H, Zhan T, Zhou Y, Chen L, Liu X, Feng X. ACS Catal. 2022; 12: 5136
- 10a Lipshutz BH, Lower A, Kucejko RJ, Noson K. Org. Lett. 2006; 8: 2969
- 10b Lee CT, Lipshutz BH. Org. Lett. 2008; 10: 4187
- 10c Qi SB, Li M, Li S, Zhou JN, Wu JW, Yu F, Zhang XC, Chan AS, Wu J. Org. Biomol. Chem. 2013; 11: 929
- 10d Zhang X.-C, Wu Y, Yu F, Wu F.-F, Wu J, Chan AS. C. Chem. Eur. J. 2009; 15: 5888
- 10e Sui YZ, Zhang XC, Wu JW, Li S, Zhou JN, Li M, Fang W, Chan AS. C, Wu J. Chem. Eur. J. 2012; 18: 7486
- 10f Junge K, Wendt B, Addis D, Zhou S, Das S, Beller M. Chem. Eur. J. 2010; 16: 68
- 10g Fialho DM, Etemadi-Davan E, Langner OC, Takale BS, Gadakh A, Sambasivam G, Lipshutz BH. Org. Lett. 2021; 23: 3282
- 10h Zhang XC, Wu FF, Li S, Zhou JN, Wu J, Li N, Fang W, Lam KH, Chan AS. C. Adv. Synth. Catal. 2011; 353: 1457
- 11a Li M, Li B, Xia HF, Ye D, Wu J, Shi Y. Green Chem. 2014; 16: 2680
- 11b Kantam ML, Yadav J, Laha S, Srinivas P, Sreedhar B, Figueras F. J. Org. Chem. 2009; 74: 4608
- 11c Addis D, Shaikh N, Zhou S, Das S, Junge K, Beller M. Chem. Asian J. 2010; 5: 1687
- 11d Swamy CA, Varenikov A, de Ruiter G. Organometallics 2020; 39: 247
Corresponding Author
Publication History
Received: 08 November 2024
Accepted after revision: 11 December 2024
Accepted Manuscript online:
13 December 2024
Article published online:
19 December 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Zhang YM, Liu P, Zhang HL. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 2008; 38: 778
- 1b Murayama H, Heike Y, Higashida K, Shimizu Y, Yodsin N, Wongnongwa Y, Jungsuttiwong S, Mori S, Sawamura M. Adv. Synth. Catal. 2020; 362: 4655
- 1c Liu Q, Wang C, Zhou H, Wang B, Lv J, Cao L, Fu Y. Org. Lett. 2018; 20: 971
- 1d El-Asaad B, Guicheret B, Métay E, Karamé I, Lemaire M. J. Mol. Catal. A: Chem. 2016; 411: 196
- 1e Bigler R, Mezzetti A. Org. Process Res. Dev. 2016; 20: 253
- 1f Smith SA, Morris RH. Synthesis 2015; 47: 1775
- 2a Bigler R, Huber R, Mezzetti A. Angew. Chem. Int. Ed. 2015; 54: 5171
- 2b Bigler R, Huber R, Stöckli M, Mezzetti A. ACS Catal. 2016; 6: 6455
- 2c Naik A, Maji T, Reiser O. Chem. Commun. 2010; 46: 4475
- 2d Zuo W, Lough AJ, Li YF, Morris RH. Science 2013; 342: 1080
- 2e Jiang L, Wu TF, Chen YC, Zhu J, Deng JG. Org. Biomol. Chem. 2006; 4: 3319
- 2f Deshpande SH, Shende VS, Shingote SK, Chakravarty D, Puranik VG, Chaudhari RV, Kelkar AA. RSC Adv. 2015; 5: 51722
- 2g Wang F, Yang T, Wu T, Zheng LS, Yin C, Shi Y, Ye XY, Chen GQ, Zhang X. J. Am. Chem. Soc. 2021; 143: 2477
- 2h Zheng LS, Férard C, Phansavath P, Ratovelomanana-Vidal V. Chem. Commun. 2018; 54: 283
- 2i Echeverria PG, Férard C, Phansavath P, Ratovelomanana-Vidal V. Catal. Commun. 2015; 62: 95
- 3a Wu X, Li X, Zanotti-Gerosa A, Pettman A, Liu J, Mills AJ, Xiao J. Chem. Eur. J. 2008; 14: 2209
- 3b Baratta W, Chelucci G, Magnolia S, Siega K, Rigo P. Chem. Eur. J. 2009; 15: 726
- 3c Kwong HL, Lee WS, Lai TS, Wong WT. Inorg. Chem. Commun. 1999; 2: 66
- 3d Johnson TC, Totty WG, Wills M. Org. Lett. 2012; 14: 5230
- 3e Chen F, Jin MY, Wang DZ, Xu C, Wang J, Xing X. ACS Catal. 2022; 12: 14429
- 4a Baratta W, Benedetti F, Del Zotto A, Fanfoni L, Felluga F, Magnolia S, Putignano E, Rigo P. Organometallics 2010; 29: 3563
- 4b Lauzon S, Schouwey L, Ollevier T. Org. Lett. 2022; 24: 1116
- 4c Ishikawa S, Hamada T, Manabe K, Kobayashi S. Synthesis 2005; 2176
- 4d Everaere K, Carpentier JF, Mortreux A, Bulliard M. Tetrahedron: Asymmetry 1999; 10: 4083
- 4e Kišić A, Stephan M, Mohar B. Adv. Synth. Catal. 2015; 357: 2540
- 4f Wang B, Zhou H, Lu G, Liu Q, Jiang X. Org. Lett. 2017; 19: 2094
- 4g Chen F, He D, Chen L, Chang X, Wang DZ, Xu C, Xing X. ACS Catal. 2019; 9: 5562
- 4h He D, Xu X, Lu Y, Zhou MJ, Xing X. Org. Lett. 2020; 22: 8458
- 4i Agac A, Karakaya I, Sahin I, Emir S, Karabuga S, Ulukanli S. J. Organomet. Chem. 2016; 819: 189
- 4j Kucukturkmen C, Agac A, Eren A, Karakaya I, Aslantas M, Celik O, Ulukanli S, Karabuga S. Catal. Commun. 2016; 74: 122
- 5a Nordin SJ, Roth P, Tarnai T, Alonso DA, Brandt P, Andersson PG. Chem. Eur. J. 2001; 7: 1431
- 5b Utepova IA, Serebrennikova PO, Streltsova MS, Musikhina AA, Fedorchenko TG, Chupakhin ON, Antonchick AP. Molecules 2018; 23: 1311
- 5c Shen WY, Li YY, Dong ZR, Gao JX. Synthesis 2009; 2413
- 5d Xu X, You Y, Jin MY, Meng FJ, Xu C, Xing X. Sci. China Chem. 2023; 66: 1443
- 5e Okano K, Murata K, Ikariya T. Tetrahedron Lett. 2000; 41: 9277
- 5f Morris DJ, Hayes AM, Wills M. J. Org. Chem. 2006; 71: 7035
- 5g Cheung FK, Lin C, Minissi F, Crivillé AL, Graham MA, Fox DJ, Wills M. Org. Lett. 2007; 9: 4659
- 5h Bednářová E, Dračínský M, Malatinec Š, Císařová I, Lamaty F, Kotora M. Adv. Synth. Catal. 2018; 360: 2869
- 5i Bouzid S, Marcoux A, Ollevier T. Chem. Eur. J. 2024; 30: e202402449
- 6a Yang XH, Xie JH, Liu WP, Zhou QL. Angew. Chem. Int. Ed. 2013; 52: 7833
- 6b Ma J, Li W, He L, Lv H. Chem. Commun. 2022; 58: 5841
- 6c Li C, Zhang L, Du Y, Zheng XL, Fu HY, Chen H, Li RX. Catal. Commun. 2012; 28: 5
- 6d Li C, Zhang L, Zheng C, Zheng X, Fu H, Chen H, Li R. Tetrahedron: Asymmetry 2014; 25: 821
- 6e Wu W, Liu S, Duan M, Tan X, Chen C, Xie Y, Lan Y, Dong XQ, Zhang X. Org. Lett. 2016; 18: 2938
- 6f Wu W, You C, Yin C, Liu Y, Dong XQ, Zhang X. Org. Lett. 2017; 19: 2548
- 6g Nian S, Ling F, Chen J, Wang Z, Shen H, Yi X, Yang YF, She Y, Zhong W. Org. Lett. 2019; 21: 5392
- 6h Yin C, Zhang R, Pan Y, Gao S, Ding X, Bai ST, Lang Q, Zhang X. J. Org. Chem. 2024; 89: 527
- 6i Hu Y, Wu W, Dong XQ, Zhang X. Org. Chem. Front. 2017; 4: 1499
- 7a Wu W, Zhao N, Liu Y, Du S, Wang X, Mo W, Yan X, Xu C, Zhou Y, Ji B. Org. Lett. 2023; 25: 8845
- 7b Yin C, Dong XQ, Zhang X. Adv. Synth. Catal. 2018; 360: 4319
- 7c Lagaditis PO, Sues PE, Sonnenberg JF, Wan KY, Lough AJ, Morris RH. J. Am. Chem. Soc. 2014; 136: 1367
- 7d Li Y, Yu S, Wu X, Xiao J, Shen W, Dong Z, Gao J. J. Am. Chem. Soc. 2014; 136: 4031
- 7e He J, Mao W, Lin J, Wu Y, Chen L, Yang P, Song D, Zhu P, Zhong W, Ling F. Org. Chem. Front. 2023; 10: 3321
- 7f Zhang L, Tang Y, Han Z, Ding K. Angew. Chem. Int. Ed. 2019; 58: 4973
- 7g Seo CS, Tsui BT, Gradiski MV, Smith SA, Morris RH. Catal. Sci. Technol. 2021; 11: 3153
- 7h Ling F, Chen J, Nian S, Hou H, Yi X, Wu F, Xu M, Zhong W. Synlett 2020; 31: 285
- 8a Widegren MB, Harkness GJ, Slawin AM, Cordes DB, Clarke ML. Angew. Chem. Int. Ed. 2017; 56: 5825
- 8b Yang H, Huo N, Yang P, Pei H, Lv H, Zhang X. Org. Lett. 2015; 17: 4144
- 8c Arenas I, Boutureira O, Matheu MI, Díaz Y, Castillón S. Eur. J. Org. Chem. 2015; 3666
- 8d Ohkuma T, Koizumi M, Yoshida M, Noyori R. Org. Lett. 2000; 2: 1749
- 8e Maerten E, Agbossou-Niedercorn F, Castanet Y, Mortreux A. Tetrahedron 2008; 64: 8700
- 8f Tao X, Li W, Ma X, Li X, Fan W, Xie X, Ayad T, Ratovelomanana-Vidal V, Zhang Z. J. Org. Chem. 2012; 77: 612
- 9a Yurino T, Nishihara R, Yasuda T, Yang S, Utsumi N, Katayama T, Arai N, Ohkuma T. Org. Lett. 2024; 26: 2872
- 9b Yamada M, Azuma K, Yamano M. Org. Lett. 2021; 23: 3364
- 9c Burk MJ, Hems W, Herzberg D, Malan C, Zanotti-Gerosa A. Org. Lett. 2000; 2: 1749
- 9d Chen CY, Reamer RA, Chilenski JR, McWilliams CJ. Org. Lett. 2003; 5: 5039
- 9e Yu H, Zhan T, Zhou Y, Chen L, Liu X, Feng X. ACS Catal. 2022; 12: 5136
- 10a Lipshutz BH, Lower A, Kucejko RJ, Noson K. Org. Lett. 2006; 8: 2969
- 10b Lee CT, Lipshutz BH. Org. Lett. 2008; 10: 4187
- 10c Qi SB, Li M, Li S, Zhou JN, Wu JW, Yu F, Zhang XC, Chan AS, Wu J. Org. Biomol. Chem. 2013; 11: 929
- 10d Zhang X.-C, Wu Y, Yu F, Wu F.-F, Wu J, Chan AS. C. Chem. Eur. J. 2009; 15: 5888
- 10e Sui YZ, Zhang XC, Wu JW, Li S, Zhou JN, Li M, Fang W, Chan AS. C, Wu J. Chem. Eur. J. 2012; 18: 7486
- 10f Junge K, Wendt B, Addis D, Zhou S, Das S, Beller M. Chem. Eur. J. 2010; 16: 68
- 10g Fialho DM, Etemadi-Davan E, Langner OC, Takale BS, Gadakh A, Sambasivam G, Lipshutz BH. Org. Lett. 2021; 23: 3282
- 10h Zhang XC, Wu FF, Li S, Zhou JN, Wu J, Li N, Fang W, Lam KH, Chan AS. C. Adv. Synth. Catal. 2011; 353: 1457
- 11a Li M, Li B, Xia HF, Ye D, Wu J, Shi Y. Green Chem. 2014; 16: 2680
- 11b Kantam ML, Yadav J, Laha S, Srinivas P, Sreedhar B, Figueras F. J. Org. Chem. 2009; 74: 4608
- 11c Addis D, Shaikh N, Zhou S, Das S, Junge K, Beller M. Chem. Asian J. 2010; 5: 1687
- 11d Swamy CA, Varenikov A, de Ruiter G. Organometallics 2020; 39: 247