Subscribe to RSS
DOI: 10.1055/a-2509-5342
Synthesis of Monofluoroalkene-Based Dipeptide Bioisosteres via Regioselective Ring Opening of 1,1-Difluorocyclopropanes
This research was financially supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number JP22H02071 (J.I.) in Grant-in-Aid for Scientific Research (B), JSPS KAKENHI Grant Number 20K05486 (K.F.) in Grant-in-Aid for Scientific Research (C) and JSPS KAKENHI Grant Number 23K04747 (K.F.) in Grant-in-Aid for Scientific Research (C). The authors appreciate the financial support from the Iketani Science and Technology Foundation.
This work is dedicated to Professor Emeritus Koichi Narasaka (The University of Tokyo) with gratitude on the occasion of his 80th birthday (sanju).
Abstract
Monofluoroalkene-based dipeptide bioisosteres were synthesized via (I) difluorocyclopropane ring opening and (II) SN2′-type defluorination. (2,2-Difluorocyclopropyl)methyl acetates were treated with acetonitrile in the presence of trifluoromethanesulfonic acid (triflic acid, TfOH). Elimination of acetic acid resulted in regioselective cleavage of the C–C bond distal to the CF2 moiety (ring opening), and then a Ritter-type N-terminal introduction afforded N-(2,2-difluorohomoallyl)acetamides. The obtained difluoroacetamides underwent allylic substitution of bromine for fluorine in an AlBr3/CuBr system to generate 3-fluoroallylic bromides, whose substitution with n-Bu4NCN facilitated C-terminal introduction. Conversion of the cyano group into a carbamoyl group afforded the desired monofluoroalkene-based dipeptide bioisosteres.
Key words
alkenes - amides - bioisosteres - C–C bond cleavage - cyclopropanes - fluorine - Ritter reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2509-5342.
- Supporting Information
Publication History
Received: 27 August 2024
Accepted after revision: 02 January 2025
Accepted Manuscript online:
02 January 2025
Article published online:
03 February 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Drouin M, Paquin J.-F. Beilstein J. Org. Chem. 2017; 13: 2637
- 1b Couve-Bonnaire S, Cahard D, Pannecoucke X. Org. Biomol. Chem. 2007; 5: 1151
- 2a Meanwell NA. J. Med. Chem. 2011; 54: 2529
- 2b Prakash Reddy V. Organofluorine Compounds in Biology and Medicine . Elsevier; Amsterdam: 2015: 1-27
- 2c Meanwell NA. J. Med. Chem. 2018; 61: 5822
- 2d Meanwell NA. J. Agric. Food Chem. 2023; 71: 18087
- 3a Landelle G, Bergeron M, Turcotte-Savard M.-O, Paquin J.-F. Chem. Soc. Rev. 2011; 40: 2867
- 3b Yanai H, Taguchi T. Eur. J. Org. Chem. 2011; 5939
- 4a Pierry C, Couve-Bonnaire S, Guilhaudis L, Neveu C, Marotte A, Lefranc B, Cahard D, Ségalas-Milazzo I, Leprince J, Pannecoucke X. ChemBioChem 2013; 14: 1620
- 4b Edmondson SD, Wei L, Xu J, Shang J, Xu S, Pang J, Chaudhary A, Dean DC, He H, Leiting B, Lyons KA, Patel RA, Patel SB, Scapin G, Wu JK, Beconi MG, Thornberry NA, Weber AE. Bioorg. Med. Chem. Lett. 2008; 18: 2409
- 4c Chang W, Mosley RT, Bansal S, Keilman M, Lam AM, Furman PA, Otto MJ, Sofia MJ. Bioorg. Med. Chem. Lett. 2012; 22: 2938
- 5a Allmendinger T, Furet P, Hungerbühler E. Tetrahedron Lett. 1990; 31: 7297
- 5b Allmendinger T, Felder E, Hungarbühler E. Tetrahedron Lett. 1990; 31: 7301
- 5c Otaka A, Watanabe H, Yukimasa A, Oishi S, Tamamura H, Fujii N. Tetrahedron Lett. 2001; 42: 5443
- 5d Okada M, Nakamura Y, Saito A, Sato A, Horikawa H, Taguchi T. Tetrahedron Lett. 2002; 43: 5845
- 5e Narumi T, Tomita K, Inokuchi E, Kobayashi K, Oishi S, Ohno H, Fujii N. Tetrahedron 2008; 64: 4332
- 5f Narumi T, Hayashi R, Tomita K, Kobayashi K, Tanahara N, Ohno H, Naito T, Kodama E, Matsuoka M, Oishi S, Fujii N. Org. Biomol. Chem. 2010; 8: 616
- 5g Watanabe D, Koura M, Saito A, Yanai H, Nakamura Y, Okada M, Sato A, Taguchi T. J. Fluorine Chem. 2011; 132: 327
- 5h Calata C, Pfund E, Lequeux T. Tetrahedron 2011; 67: 1398
- 5i Dutheuil G, Pierry C, Villiers E, Couve-Bonnaire S, Pannecoucke X. New J. Chem. 2013; 37: 1320
- 5j Sano S, Matsumoto T, Nakao M. Tetrahedron Lett. 2014; 55: 4480
- 5k Sano S, Matsumoto T, Nanataki H, Tempaku S, Nakao M. Tetrahedron Lett. 2014; 55: 6248
- 5l Villiers E, Couve-Bonnaire S, Cahard D, Pannecoucke X. Tetrahedron 2015; 71: 7054
- 5m Nihei T, Nishi Y, Ikeda N, Yokotani S, Ishihara T, Arimitsu S, Konno T. Synthesis 2016; 48: 865
- 5n Guérin D, Dez I, Gaumont A.-C, Pannecoucke X, Couve-Bonnaire S. Org. Lett. 2016; 18: 3606
- 5o Nadon J.-F, Rochon K, Grastilleur S, Langlois G, Dao TT. H, Blais V, Guérin B, Gendron L, Dory YL. ACS Chem. Neurosci. 2017; 8: 40
- 5p Karad SN, Pal M, Crowley RS, Prisinzano TE, Altman RA. ChemMedChem 2017; 12: 571
- 6a Ni C, Hu J. Synthesis 2014; 46: 842
- 6b Adekenova KS, Wyatt PB, Adekenov SM. Beilstein J. Org. Chem. 2021; 17: 245
- 6c Itoh T, Hayase S, Nokami T. Chem. Rec. 2023; 23: e202300028
- 7a Zeiger DN, Liebman JF. J. Mol. Struct. 2000; 556: 83
- 7b Dolbier WR. Jr, Battiste MA. Chem. Rev. 2003; 103: 1071
- 8a Dolbier WR. Jr. Acc. Chem. Res. 1981; 14: 195
- 8b Song X, Xu C, Wang M. Tetrahedron Lett. 2017; 58: 1806
- 8c Lv L, Qian H, Li Z. ChemCatChem 2022; 14: e202200890
- 8d Refs. 6b and 7b.
- 9a Ai Y, Yang H, Duan C, Li X, Yu S. Org. Lett. 2022; 24: 5051
- 9b Lv L, Qian H, Crowell AB, Chen S, Li Z. ACS Catal. 2022; 12: 6495
- 9c Zeng Y, Gao H, Zhu Y, Jiang Z.-T, Lu G, Xia Y. ACS Catal. 2022; 12: 8857
- 9d Qian H, Nguyen HD, Lv L, Chen S, Li Z. Angew. Chem. Int. Ed. 2023; 62: e202303271
- 9e Li D, Shen C, Si Z, Liu L. Angew. Chem. Int. Ed. 2023; 62: e202310283
- 9f Sun J, Ye H, Sun F, Pan Y.-Y, Zhu X.-W, Wu X.-X. Org. Lett. 2023; 25: 5220
- 9g Wang X, Patureau FW. Chem. Commun. 2023; 59: 486
- 9h Qian H, Cheng ZP, Luo Y, Lv L, Chen S, Li Z. J. Am. Chem. Soc. 2024; 146: 24
- 9i Qi S, Hua Y, Pan L, Yang J, Zhang J. Chin. J. Chem. 2024; 42: 823
- 9j Su Z, Tan B, Li Z, Huang H, Zhang Y. Org. Lett. 2024; 26: 5375
- 9k Zeng Y, Gao H, Jiang Z.-T, Zhu Y, Chen J, Zhang H, Lu G, Xia Y. Nat. Commun. 2024; 15: 4317
- 9l Wu X, Zeng Y, Jiang Z.-T, Zhu Y, Xie L, Xia Y. Org. Lett. 2022; 24: 8429
- 10a Liu H, Tian L, Wang H, Li Z.-Q, Zhang C, Xue F, Feng C. Chem. Sci. 2022; 13: 2686
- 10b Zhao Y.-R, Ma Z.-Y, Liu L, Gao P, Duan X.-H, Hu M. J. Org. Chem. 2023; 88: 3787
- 11a Fuchibe K, Matsuo T, Ichikawa J. Org. Lett. 2023; 25: 4276
- 11b Goto T, Kawasaki-Takasuka T, Yamazaki T. J. Org. Chem. 2019; 84: 9509
- 12a Krimen LI, Cota DJ. Org. React. 1969; 17: 213
- 12b Bishop R. Ritter-Type Reactions . In Comprehensive Organic Synthesis, 2nd ed., Vol. 6. Knochel P, Molander GA. Elsevier; Amsterdam: 2014: 239-295
- 12c Chen M.-E, Chen X.-W, Hu Y.-H, Ye R, Lv J.-W, Li B, Zhang F.-M. Org. Chem. Front. 2021; 8: 4623
- 13a Takayama R, Fuchibe K, Ichikawa J. ARKIVOC 2018; (ii): 72
- 13b Aono T, Sasagawa H, Fuchibe K, Ichikawa J. Org. Lett. 2015; 17: 5736
- 13c Fuchibe K, Takayama R, Aono T, Hu J, Hidano T, Sasagawa H, Fujiwara M, Miyazaki S, Nadano R, Ichikawa J. Synthesis 2018; 50: 514
- 14a Amii H, Uneyama K. Chem. Rev. 2009; 109: 2119
- 14b Unzner TA, Magauer T. Tetrahedron Lett. 2015; 56: 877
- 14c Hamel J.-D, Paquin J.-F. Chem. Commun. 2018; 54: 10224
- 14d Fuchibe K, Fujita T, Ichikawa J. C–F Bond Activation Reactions . In Comprehensive Organometallic Chemistry IV, Vol. 12. Parkin G, Meyer K, O’Hare D. Elsevier; Amsterdam: 2022: 421-464
- 15 Oshiro K, Morimoto Y, Amii H. Synthesis 2010; 2080
- 16 Wang F, Luo T, Hu J, Wang Y, Krishnan HS, Jog PV, Ganesh SK, Prakash GK. S, Olah GA. Angew. Chem. Int. Ed. 2011; 50: 7153
- 17 Dolbier reported that acetolysis of (2,2-difluoro-3-methylcyclopropyl)methyl tosylate afforded the distal C–C bond cleavage product while that of (2,2-difluorocyclopropyl)methyl tosylate afforded the proximal C–C bond cleavage product. Regioselectivity of the C–C bond cleavage is thus influenced by the substitution pattern on the cyclopropane ring. See: Battiste MA, Tian F, Baker JM, Bautista O, Villalobos J, Dolbier WR. Jr. J. Fluorine Chem. 2003; 119: 39
- 18 Okada M, Nakamura Y, Saito A, Sato A, Horikawa H, Taguchi T. Chem. Lett. 2002; 28
- 19 Direct cyanation of (difluorohomoallyl)acetamide 7a did not afford 15a. For example, treatment of 7a with Me3SiCN (2 equiv) or KCN (2 equiv) in the presence of Me2AlCl (2 equiv) led to recovery of 7a in 4% and 66% yield, respectively.
- 20 Kiss Á, Hell Z. Tetrahedron Lett. 2011; 52: 6021
- 21 Fuchibe K, Aono T, Hu J, Ichikawa J. Org. Lett. 2016; 18: 4502
- 22 Kobayashi Y, Taguchi T, Morikawa T, Takase T, Takanashi H. J. Org. Chem. 1982; 47: 3232
For reviews on bioisosteres, see:
For reviews on the syntheses of monofluoroalkenes, see:
See also:
See also:
For reviews, see:
For reviews on distal- and proximal-selective C–C bond cleavage of 1,1-difluorocyclopropanes, see:
Recent reports on distal-selective C–C bond cleavage of 1,1-difluorocyclopropanes. For transition-metal-catalyzed reactions, see:
For Lewis acid promoted reactions, see:
For recent reports on proximal-selective C–C bond cleavage of 1,1-difluorocyclopropanes, see:
For oxidative N-introduction to 1,1-difluorocyclopropanes, see also:
For reviews on the Ritter amination, see:
For reviews on C–F bond activation reactions, see: