RSS-Feed abonnieren
DOI: 10.1055/a-2510-7814
Photocatalytic Strategies for the Synthesis of Xanthates and Their Analogues
We thank the Centre National de la Recherche Scientifique (CNRS), the Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM) and the Université de Montpellier for financial support.

Abstract
Sulfur-containing organic molecules, particularly xanthates (dithiocarbonates) and dithiocarbamates, are valuable intermediates in synthetic chemistry and the development of bioactive molecules. For instance, xanthates are potent carbon-radical precursors that can be engaged in diverse transformations, including the 1,2-difunctionalization of alkenes and other functionalizations. However, traditional synthetic methods for these compounds have been limited in efficiency and diversity. This Short Review focuses on novel photochemical procedures for generating xanthates and dithiocarbamates, discussing their advantages and disadvantages. Two main strategies emerge from the literature: (1) Three-component reactions involving the in situ formation of carbodithioate anions, and (2) two-component reactions (direct xanthylation and thiocarbamoylthiolation) using ex situ prepared xanthate and dithiocarbamate sources.
1 Introduction
2 Three-Component Transformations
3 Two-Component Transformations
4 Miscellaneous
5 Conclusion
Publikationsverlauf
Eingereicht: 10. Dezember 2024
Angenommen nach Revision: 07. Januar 2025
Accepted Manuscript online:
07. Januar 2025
Artikel online veröffentlicht:
24. Februar 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Dunbar KL, Scharf DH, Litomska A, Hertweck C. Chem. Rev. 2017; 117: 5521
- 1b Wang N, Saidhareddy P, Jiang X. Nat. Prod. Rep. 2020; 37: 246
- 2a Van den Bosch S, Koelewijn S.-F, Renders T, Van der Bossche G, Vangeel T, Schutyser W, Sels BF. Top. Curr. Chem. 2018; 376: 36
- 2b Dénès F, Pichowicz M, Povie G, Renaud P. Chem. Rev. 2014; 114: 2587
- 2c Alegre-Cebollada J, Kosuri P, Rivas-Pardo JA, Fernández JM. Nat. Chem. 2011; 3: 882
- 3 Boyd DA. Angew. Chem. Int. Ed. 2016; 55: 15486
- 4a Bhandari S, Katore AR, Bajaj DM, Sharma P, Talla V, Shankaraiah N. ChemistrySelect 2018; 3: 6766
- 4b Huang W, Ding Y, Miao Y, Liu M.-Z, Li Y, Yang G.-F. Eur. J. Med. Chem. 2009; 44: 3687
- 4c Marinovich M, Viviani B, Capra V, Corsini E, Anselmi L, D’Agostino G, Di Nucci A, Binaglia M, Tonini M, Galli CL. Chem. Res. Toxicol. 2002; 15: 26
- 5a Quiclet-Sire B, Zard SZ. Org. Biomol. Chem. 2023; 21: 910
- 5b Zard SZ. J. Chem. Res. 2022; 46
- 5c Michalland J, Casaretto N, Zard SZ. Angew. Chem. Int. Ed. 2022; 61: e202113333
- 5d Bieszczad B, Zard SZ. Org. Lett. 2022; 24: 6973
- 5e López-Mendoza P, Miranda LD. Org. Biomol. Chem. 2020; 18: 3487
- 5f Schweitzer-Chaput B, Horwitz MA, de Pedro Beato E, Melchiorre P. Nat. Chem. 2019; 11: 129
- 5g Axon J, Boiteau L, Boivin J, Forbes JE, Zard SZ. Tetrahedron Lett. 1994; 35: 1719
- 6a Na CG, Ravelli D, Alexanian EJ. J. Am. Chem. Soc. 2020; 142: 44
- 6b Na CG, Alexanian EJ. Angew. Chem. Int. Ed. 2018; 57: 13106
- 6c Williamson JB, Czaplyski WL, Alexanian EJ, Leibfarth FA. Angew. Chem. Int. Ed. 2018; 57: 6261
- 6d Czaplyski WL, Na CG, Alexanian EJ. J. Am. Chem. Soc. 2016; 138: 13854
- 7a Grainger RS, Welsh EJ. Angew. Chem. Int. Ed. 2007; 46: 5377
- 7b Cordero-Vargas A, Quiclet-Sire B, Zard SZ. Org. Biomol. Chem. 2005; 3: 4432
- 7c Vargas AC, Quiclet-Sire B, Zard SZ. Org. Lett. 2003; 5: 3717
- 7d Bacqué E, Pautrat F, Zard SZ. Org. Lett. 2003; 5: 325
- 7e Miranda LD, Zard SZ. Org. Lett. 2002; 4: 1135
- 7f Kalaï C, Tate E, Zard SZ. Chem. Commun. 2002; 1430
- 8a Zard SZ. Xanthates and Related Derivatives as Radical Precursors. In Encyclopedia of Radicals in Chemistry, Biology and Materials. Chatgilialoglu C, Studer A. John Wiley & Sons; Chichester: 2012
- 8b Degani L, Fochl R. Synthesis 1978; 365
- 9a Qin H, Yang M, Li Y, Yang X, Hu Y, Liu C, He W, Fang Z, Guo K. Green Synth. Catal. 2024; 4: 350
- 9b Azizi N, Aryanasab F, Saidi MR. Org. Lett. 2006; 8: 5275
- 10 Wang S, Yang L, Liang F, Zhong Y, Liu X, Wang Q, Zhu D. Chem. Sci. 2023; 14: 9197
- 11 Lv Y, Liu R, Ding H, Wei W, Zhao X, He L. Org. Chem. Front. 2022; 9: 3486
- 12 Vishwakarma RK, Kumar S, Singh KN. Org. Lett. 2021; 23: 4147
- 13 Chen F, Shi G, Zheng Y, Dong Q, Peng W, Wang R, Hao E, Wang X, Sun K. Org. Lett. 2024; 26: 9604
- 14 Li G, Yan Q, Gan Z, Li Q, Dou X, Yang D. Org. Lett. 2019; 21: 7938
- 15 Li X, Cui W, Deng Q, Song X, Lv J, Yang D. Green Chem. 2022; 24: 1302
- 16 Liu M, Qian Y, Wu Y, Zhang F. Green Chem. 2023; 25: 3852
- 17 Xu H, Li X, Ma J, Zuo J, Song X, Lv J, Yang D. Chin. Chem. Lett. 2023; 34: 108403
- 18 Zhang M, Wang B, Cao Y, Liu Y, Wang Z, Wang Q. Org. Lett. 2022; 24: 8895
- 19 de Pedro Beato E, Spinnato D, Zhou W, Melchiorre P. J. Am. Chem. Soc. 2021; 143: 12304
- 20 Quinn RK, Könst ZA, Michalak SE, Schmidt Y, Szklarski AR, Flores AR, Nam S, Horne DA, Vanderwal CD, Alexanian EJ. J. Am. Chem. Soc. 2016; 138: 696
- 21 Chen H, Zhou Y, Lei P, Wang H, Yan Q, Properzi R, Wang W, Jing L, Chen F. Green Synth. Catal. 2023; 4: 350
- 22 Geniller L, Souche C, Taillefer M, Jaroschik F, Prieto A. Org. Lett. 2024; 26: 9574
- 23 Guan Z.-P, Yang X.-X, Zhao S.-Y, Yi Z.-Q, Wu Y.-X, Li Y.-Y, Dong Z.-B. Org. Lett. 2024; 26: 8323
- 24 Guo H.-M, Wang J.-J, Xiong Y, Wu X. Angew. Chem. Int. Ed. 2024; 63: e202409605
- 25 Geniller L, Taillefer M, Jaroschik F, Prieto A. ChemCatChem 2023; 15: e202300808