Osteologie 2025; 34(01): 14-30
DOI: 10.1055/a-2511-3251
Review

Sterbealter und Liegezeit: Zwei unterschiedliche Herausforderungen der Forensischen Osteologie

Time since death and age at death: Two different challenges in Forensic Osteology
Frank Ramsthaler
1   Institut für Rechtsmedizin, Universität des Saarlandes, Saarbrücken, Germany
,
Jan M. Federspiel
1   Institut für Rechtsmedizin, Universität des Saarlandes, Saarbrücken, Germany
,
Marie-Christine Feix-Berscheid
1   Institut für Rechtsmedizin, Universität des Saarlandes, Saarbrücken, Germany
,
Marcel A. Verhoff
2   Institut für Rechtsmedizin, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
› Author Affiliations

Zusammenfassung

Ziel

Das Alter zum Todeszeitpunkt und das postmortale Intervall (PMI) sind zwei zentrale Bestandteile des anthropologischen Profils mit besonderem Anspruch an die jeweilige Schätzung, insbesondere in der forensischen Fallarbeit. In Lehrbüchern und wissenschaftlichen Veröffentlichungen werden diese beiden Themen typischerweise separat bearbeitet. Dennoch können sie als logisch zusammenhängend betrachtet werden, wodurch Gemeinsamkeiten beider Themen auffallen. Das primäre Ziel der vorliegenden Arbeit war es, die methodische Vielfalt anwendbarer Methoden an einer ausgewählten Stichprobe darzulegen und die Methoden aufzuzeigen, die eine möglichst präzise und objektive Beurteilung des Alters zum Todeszeitpunkt und des PMI erlauben.

Methoden

Narrativer und erfahrungsbasierter selektiver Review. Zudem wurden Möglichkeiten und Limitationen verschiedener Methoden (Lamendin, Demirjian, Nemeskéri und Acsádi) an einer eigenen Stichprobe untersucht.

Ergebnisse

In der großen Anzahl an Publikationen zu den behandelten Themen zeigen sich signifikante wissenschaftliche Bemühungen, das verfügbare Methodenspektrum zu erweitern. Die in dieser Arbeit diskutierten Methoden reflektierten die Ausbildungsinhalte der Forensic Anthropology Society of Europe (FASE) und eigene Erfahrungen. Basierend auf statistischen Beispielen wurden die Stärken und Schwächen der zuvor genannten Methoden diskutiert.

Schlussfolgerung

Das biologische Alter (Alter zum Zeitpunkt des Todes) sowie physikochemische und mikrobielle Abbauprozesse (PMI) können mit zurzeit verfügbaren Methoden abgeschätzt werden. Durch Einflussfaktoren bedingt sind die Methoden jedoch in ihrer Präzision und Schätzsicherheit limitiert. Dies muss bei gutachterlichen Stellungnahmen klar kommuniziert werden.

Abstract

Aim

Age at death and the postmortem interval (PMI) are two central questions within the process of anthropological profiling with special demands on their accuracy, particularly in forensic casework. In textbooks and scientific publications, these two topics are typically addressed separately. However, they can primarily be viewed as causally and logically related, revealing connections and similarities between both issues. The primary objective of this article was to demonstrate the methodological diversity of applicable techniques through a selected sample and to identify those that enable a precise and objective assessment of both age at death and PMI.

Methods

A narrative and experience-based (selective) review. Additionally, possibilities and limitations of certain methods (Lamendin, Demirjian, and Nemeskéri and Acsádi) were tested on personal samples.

Results

There remains significant scientific effort in advancing methods and expanding the range of techniques, which explains the large number of publications on this topic. The methods presented in this publication were selected to mirror the educational content of the Forensic Anthropology Society of Europe (FASE) and personal experiences. The possibilities and limitations of the abovementioned methods were discussed based on small statistical examples.

Conclusion

It is evident that both biological aging processes (a measure of age at death) and physicochemical and microbial decomposition processes (a measure of the PMI) are estimable with currently available methods. However, due to the complexity of influencing factors, limitations in precision or estimation certainty persist, which must be communicated, particularly in expert assessments.



Publication History

Received: 23 October 2024

Accepted: 02 January 2025

Article published online:
11 February 2025

© 2025. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

  • 1 Lamendin H, Baccino E, Humbert JF, Tavernier JC, Nossintchouk RM, Zerilli A. A simple technique for age estimation in adult corpses: the two criteria dental method. J Forensic Sci 1992; 37: 1373-1379
  • 2 Prince DA, Ubelaker DH. Application of Lamendin’s adult dental aging technique to a diverse skeletal sample. J Forensic Sci 2002; 47: 107-116
  • 3 Demirjian A, Goldstein H, Tanner J. A new system of dental age assessment. Hum Biol 1973; 45: 211-227
  • 4 Nemeskéri J, Harsányi L, Acsádi G. Methoden zur Diagnose des Lebensalters von Skelettfunden «Anthropologischer Anzeiger». 1960; 24: 70-95
  • 5 Nielsen AW, Klose-Jensen R, Hartlev LB, Boel LWT, Thomsen JS, Keller KK, Hauge E-M. Age-related histological changes in calcified cartilage and subchondral bone in femoral heads from healthy humans. Bone 2019; 129: 115037
  • 6 Listi GA, Manhein MH. The use of vertebral osteoarthritis and osteophytosis in age estimation: Age estimation from the vertebrae. J Forensic Sci 2012; 57: 1537-1540
  • 7 Brenneis M, Thewes N, Holder J, Stief F, Braun S. Validation of central peak height method for final adult height predictions on long leg radiographs. Bone Jt Open 2023; 4: 750-757
  • 8 Braun J, Baraliakos X. Different types of structural changes in the sacroiliac joints in axial spondyloarthritis: how important are joint shape variations?. Rheumatology (Oxford) 2023; 62: 996-998
  • 9 Canavese F, Charles YP, Dimeglio A. Skeletal age assessment from elbow radiographs. Review of the literature. Chir Organi Mov 2008; 92: 1-6
  • 10 Holick MF. Vitamin D deficiency. N Engl J Med 2007; 357: 266-281
  • 11 Smedslund G, Mowinckel P, Heiberg T, Kvien TK, Hagen KB. Does the weather really matter? A cohort study of influences of weather and solar conditions on daily variations of joint pain in patients with rheumatoid arthritis. Arthritis Rheum 2009; 61: 1243-1247
  • 12 Li R, Xie C, Chen L, Cai M, Wang X, Wang C, Zhang Z, Hua J, Li H, Lin H. Healthy lifestyle and longevity genetics associated with healthy life expectancy and years of life gained at age of 60 years: A prospective cohort study. Z Gesundh Wiss. 2023 Available from: https://link.springer.com/article/10.1007/s10389-023-02074-1
  • 13 Cunha E, Cattaneo C. Forensic anthropology and forensic pathology. In: Forensic Anthropology and Medicine. Totowa, NJ: Humana Press; 2007: 39-53
  • 14 Cunha E, Baccino E, Martrille L, Ramsthaler F, Prieto J, Schuliar Y, Lynnerup N, Cattaneo C. The problem of aging human remains and living individuals: a review. Forensic Sci Int 2009; 193: 1-13
  • 15 Schmitt A, Murail P, Cunha E, Rougé D. Variability of the pattern of aging on the human skeleton: evidence from bone indicators and implications on age at death estimation. J Forensic Sci 2002; 47: 1203-1209
  • 16 Schmitt HP. Über die Beziehungen zwischen Dichte und Festigkeit des Knochens am Beispiel des menschlichen Femur. Z Anat Entwicklungsgesch 1968; 127: 1-24
  • 17 Navitainuck DU, Vach W, Alt KW, Pichler SL. Osteological age-at-death estimation in an archaeological sample avoiding age-mimicry: a six-step approach. Archaeol Anthropol Sci 2024; 16: 1-17
  • 18 Brooks S, Suchey JM. Skeletal age determination based on the os pubis: A comparison of the Acsádi-Nemeskéri and Suchey-Brooks methods. Hum Evol 1990; 5: 227-238
  • 19 Mincer HH, Harris EF, Berryman HE. The A.B.F.O. study of third molar development and its use as an estimator of chronological age. J Forensic Sci 1993; 38: 379-390
  • 20 Blankenship JA, Mincer HH, Anderson KM, Woods MA, Burton EL. Third molar development in the estimation of chronologic age in american blacks as compared with whites. J Forensic Sci 2007; 52: 428-433
  • 21 Cameriere R, De Luca S, De Angelis D, Merelli V, Giuliodori A, Cingolani M, Cattaneo C, Ferrante L. Reliability of Schmeling’s stages of ossification of medial clavicular epiphyses and its validity to assess 18 years of age in living subjects. Int J Legal Med 2012; 126: 923-932
  • 22 De Angelis D, Mele E, Gibelli D, Merelli V, Spagnoli L, Cattaneo C. The applicability of the Lamendin method to skeletal remains buried for a 16-year period: a cautionary note. J Forensic Sci 2015; 60 Suppl 1: S177-S181
  • 23 Zelic K, Pavlovic S, Mijucic J, Djuric M, Djonic D. Applicability of pulp/tooth ratio method for age estimation. Forensic Sci Med Pathol 2020; 16: 43-48
  • 24 Cameriere R, Brogi G, Ferrante L, Mirtella D, Vultaggio C, Cingolani M, Fornaciari G. Reliability in age determination by pulp/tooth ratio in upper canines in skeletal remains. J Forensic Sci 2006; 51: 861-864
  • 25 Shah PH, Venkatesh R. Pulp/tooth ratio of mandibular first and second molars on panoramic radiographs: An aid for forensic age estimation. J Forensic Dent Sci 2016; 8: 112
  • 26 Cameriere R, Ferrante L, Belcastro MG, Bonfiglioli B, Rastelli E, Cingolani M. Age estimation by pulp/tooth ratio in canines by mesial and vestibular peri-apical X-rays. J Forensic Sci 2007; 52: 1151-1155
  • 27 Martrille L, Ubelaker DH, Cattaneo C, Seguret F, Tremblay M, Baccino E. Comparison of four skeletal methods for the estimation of age at death on white and black adults. J Forensic Sci 2007; 52: 302-307
  • 28 Baccino E, Sinfield L, Colomb S, Baum TP, Martrille L. Technical note: The two step procedure (TSP) for the determination of age at death of adult human remains in forensic cases. Forensic Sci Int 2014; 244: 247-251
  • 29 Rissech C, Wilson J, Winburn AP, Turbón D, Steadman D. A. Comparison of three established age estimation methods on an adult Spanish sample. Int J Legal Med 2012; 126: 145-155
  • 30 Lynnerup N, Thomsen I, Frohlich B. A non-invasive technique for age at death determination. Med Sci Law 1990; 30: 317-320
  • 31 Lynnerup N, Frohlich B, Thomsen JL. Assessment of age at death by microscopy: unbiased quantification of secondary osteons in femoral cross sections. Forensic Sci Int 2006; 159 Suppl 1: S100-S103
  • 32 Gustafson G. Age determination on teeth. J Am Dent Assoc 1950; 41: 45-54
  • 33 Downer MC. The improving dental health of United Kingdom adults and prospects for the future. Br Dent J 1991; 170: 154-158
  • 34 Johanson G. Age determinations from human teeth. Odontol Revy. 1971 Available from: https://cir.nii.ac.jp/crid/1571698599600352384
  • 35 Maples WR. An improved technique using dental histology for estimation of adult age. J Forensic Sci 1978; 23: 764-770
  • 36 Ramsthaler F, Kettner M, Verhoff MA. Validity and reliability of dental age estimation of teeth root translucency based on digital luminance determination. Int J Legal Med 2014; 128: 171-176
  • 37 Willems G, Van Olmen A, Spiessens B, Carels C. Dental age estimation in Belgian children: Demirjian’s technique revisited. J Forensic Sci 2001; 46: 893-895
  • 38 Schmeling A, Grundmann C, Fuhrmann A, Kaatsch H-J, Knell B, Ramsthaler F, Reisinger W, Riepert T, Ritz-Timme S, Rösing FW, Rötzscher K, Geserick G. Criteria for age estimation in living individuals. Int J Legal Med 2008; 122: 457-460
  • 39 Jung H. [The radiation risks from x-ray studies for age assessment in criminal proceedings]. Rofo 2000; 172: 553-556
  • 40 Ramsthaler F, Proschek P, Betz W, Verhoff MA. How reliable are the risk estimates for X-ray examinations in forensic age estimations? A safety update. Int J Legal Med 2009; 123: 199-204
  • 41 Wittwer-Backofen U, Buba H. Age estimation by tooth cementum annulation: perspectives of a new validation study. Paleodemography: Age distributions from skeletal samples 2002; 44: 107-128
  • 42 Lipsinic FE, Paunovich E, Houston GD, Robison SF. Correlation of age and incremental lines in the cementum of human teeth. J Forensic Sci 1986; 31: 982-989
  • 43 Condon K, Charles DK, Cheverud JM, Buikstra JE. Cementum annulation and age determination in Homo sapiens. II. Estimates and accuracy. Am J Phys Anthropol 1986; 71: 321-330
  • 44 Herrmann B, Grupe G, Hummel S, Piepenbrink H, Schutkowski H. Prähistorische Anthropologie: Leitfaden der Feld- und Labormethoden. 1990th ed. Berlin, Germany: Springer; 1990
  • 45 Meindl RS, Lovejoy CO. Ectocranial suture closure: a revised method for the determination of skeletal age at death based on the lateral-anterior sutures. Am J Phys Anthropol 1985; 68: 57-66
  • 46 Harth S, Obert M, Ramsthaler F, Reuß C, Traupe H, Verhoff MA. Dokumentation der Schädelnahtossifikation. Rechtsmedizin 2009; 19: 171-174
  • 47 Harth S, Obert M, Ramsthaler F, Reuss C, Traupe H, Verhoff MA. Ossification degrees of cranial sutures determined with flat-panel computed tomography: narrowing the age estimate with extrema. J Forensic Sci 2010; 55: 690-694
  • 48 Greulich WW, Pyle SI. Radiographic atlas of skeletal development of the Hand and wrist. Palo Alto, CA: Stanford University Press; 1959
  • 49 Kellinghaus M, Schulz R, Vieth V, Schmidt S, Pfeiffer H, Schmeling A. Enhanced possibilities to make statements on the ossification status of the medial clavicular epiphysis using an amplified staging scheme in evaluating thin-slice CT scans. Int J Legal Med 2010; 124: 321-325
  • 50 Nemeskéri J, Harsányi L, Acsädi G. Methoden zur Diagnose des Lebensalters von Skelettfunden. Anthropol Anz 1960; 24: 70-95
  • 51 Todd TW. Age changes in the pubic bone. I. The male white pubis. Am J Phys Anthropol 1920; 3: 285-334
  • 52 Işcan MY, Loth SR, Wright RK. Age estimation from the rib by phase analysis: white males. J Forensic Sci 1984; 29: 1094-1104
  • 53 Rissech C, Estabrook GF, Cunha E, Malgosa A. Using the acetabulum to estimate age at death of adult males. J Forensic Sci 2006; 51: 213-229
  • 54 Lovejoy CO. Dental wear in the Libben population: its functional pattern and role in the determination of adult skeletal age at death. Am J Phys Anthropol 1985; 68: 47-56
  • 55 Lovejoy CO, Meindl RS, Mensforth RP, Barton TJ. Multifactorial determination of skeletal age at death: a method and blind tests of its accuracy. Am J Phys Anthropol 1985; 68: 1-14
  • 56 Lovejoy CO, Meindl RS, Pryzbeck TR, Mensforth RP. Chronological metamorphosis of the auricular surface of the ilium: a new method for the determination of adult skeletal age at death. Am J Phys Anthropol 1985; 68: 15-28
  • 57 Stout SD. The use of bone histomorphometry in skeletal identification: the case of Francisco Pizarro. J Forensic Sci 1986; 31: 296-300
  • 58 Stout SD, Paine RR. Brief communication: histological age estimation using rib and clavicle. Am J Phys Anthropol 1992; 87: 111-115
  • 59 Meissner C, Ritz-Timme S. Molecular pathology and age estimation. Forensic Sci Int 2010; 203: 34-43
  • 60 Márquez-Ruiz AB, González-Herrera L, Valenzuela A. Usefulness of telomere length in DNA from human teeth for age estimation. Int J Legal Med 2018; 132: 353-359
  • 61 Berg S, Specht W. Untersuchungen zur Bestimmung der Liegezeit von Skeletteilen. Int J Legal Med 1958; 47: 209-241
  • 62 Amendt J, Richards CS, Campobasso CP, Zehner R, Hall MJR. Forensic entomology: applications and limitations. Forensic Sci Med Pathol 2011; 7: 379-392
  • 63 Amendt J, Krettek R, Zehner R. Forensic entomology. Sci Nat 2004; 91: 51-65
  • 64 Amendt J, Bugelli V, Bernhardt V. Time flies-age grading of adult flies for the estimation of the post-mortem interval. Diagnostics (Basel) 2021; 11: 152
  • 65 Tozzo P, Scrivano S, Sanavio M, Caenazzo L. The role of DNA degradation in the estimation of post-mortem interval: A systematic review of the current literature. Int J Mol Sci 2020; 21: 3540
  • 66 Spalding KL, Buchholz BA, Bergman L-E, Druid H, Frisén J. Forensics: age written in teeth by nuclear tests. Nature 2005; 437: 333-334
  • 67 Alkass K, Buchholz BA, Ohtani S, Yamamoto T, Druid H, Spalding KL. Age estimation in forensic sciences: application of combined aspartic acid racemization and radiocarbon analysis. Mol Cell Proteomics 2010; 9: 1022-1030
  • 68 Damann FE. Bacterial symbionts and taphonomic agents of humans. In: Taphonomy of Human Remains: Forensic Analysis of the Dead and the Depositional Environment. Chichester, UK: John Wiley & Sons, Ltd; 2017: 155-166
  • 69 Speruda M, Piecuch A, Borzęcka J, Kadej M, Ogórek R. Microbial traces and their role in forensic science. J Appl Microbiol 2022; 132: 2547-2557
  • 70 Ramsthaler F, Kreutz K, Zipp K, Verhoff MA. Dating skeletal remains with luminol-chemiluminescence. Validity, intra- and interobserver error. Forensic Sci Int 2009; 187: 47-50
  • 71 Schmidt V-M, Zelger P, Woess C, Pallua AK, Arora R, Degenhart G, Brunner A, Zelger B, Schirmer M, Rabl W, Pallua JD. Application of micro-computed tomography for the estimation of the post-mortem interval of human skeletal remains. Biology (Basel) 2022; 11: 1105
  • 72 Martos R, Ibáñez O, Mesejo P. Artificial intelligence in forensic anthropology: State of the art and Skeleton-ID project. In: Ross AH, Byrd JH (eds.). Methodological and Technological Advances in Death Investigations. Elsevier; 2024: 83-153
  • 73 Johnson A. Artificial intelligence in forensic anthropology and odontology. In: Artificial Intelligence in Forensic Science. Boca Raton: CRC Press; 2024: 165-182
  • 74 Ritz-Timme S, Collins MJ. Racemization of aspartic acid in human proteins. Ageing Res Rev 2002; 1: 43-59
  • 75 Ritz-Timme S, Laumeier I, Collins MJ. Aspartic acid racemization: evidence for marked longevity of elastin in human skin. Br J Dermatol 2003; 149: 951-959
  • 76 Ramsthaler F, Jopp E, Krumm P, Bratzke H, Verhoff MA. Forensic anthropology: Aufgaben im Rahmen der Identifizierungskommission des Bundeskriminalamtes. Rechtsmedizin 2009; 19: 83-84
  • 77 Ramsthaler F, Verhoff MA. Forensische Anthropologie. Rechtsmedizin 2013; 23: 77-78
  • 78 Verhoff MA, Schiwy-Bochat K-H, Kreutz K, Witzel C, Huckenbeck W, Ramsthaler F. Das forensisch-osteologische Gutachten – formale Anforderungen aus rechtsmedizinischer Sicht: Empfehlungen der Arbeitsgemeinschaft Forensische Anthropologie der Gesellschaft für Anthropologie (AGFA). Rechtsmedizin 2009; 19: 357-361
  • 79 Jantz RL, Jantz LM, Devlin JL. Secular changes in the postcranial skeleton of American whites. Hum Biol 2016; 88: 65-75
  • 80 Konigsberg LW, Frankenberg SR. Estimation of age structure in anthropological demography. Am J Phys Anthropol 1992; 89: 235-256
  • 81 Konigsberg LW, Herrmann NP, Wescott DJ, Kimmerle EH. Estimation and evidence in forensic anthropology: age-at-death. J Forensic Sci 2008; 53: 541-557
  • 82 Konigsberg LW, Frankenberg SR, Liversidge HM. Optimal trait scoring for age estimation. Am J Phys Anthropol 2016; 159: 557-576
  • 83 Verhoff MA, Ramsthaler F, Krähahn J, Deml U, Gille RJ, Grabherr S, Thali MJ, Kreutz K. Digital forensic osteology – possibilities in cooperation with the Virtopsy project. Forensic Sci Int 2008; 174: 152-156
  • 84 Thevissen PW, Fieuws S, Willems G. Human dental age estimation using third molar developmental stages: does a Bayesian approach outperform regression models to discriminate between juveniles and adults?. Int J Legal Med 2010; 124: 35-42
  • 85 Braga J, Heuze Y, Chabadel O, Sonan NK, Gueramy A. Non-adult dental age assessment: correspondence analysis and linear regression versus Bayesian predictions. Int J Legal Med 2005; 119: 260-274
  • 86 Fanelli D, Costas R, Ioannidis JPA. Meta-assessment of bias in science. Proc Natl Acad Sci U S A 2017; 114: 3714-3719
  • 87 Meinl A, Huber CD, Tangl S, Gruber GM, Teschler-Nicola M, Watzek G. Comparison of the validity of three dental methods for the estimation of age at death. Forensic Sci Int 2008; 178: 96-105
  • 88 Calce SE, Rogers TL. Evaluation of age estimation technique: testing traits of the acetabulum to estimate age at death in adult males. J Forensic Sci 2011; 56: 302-311
  • 89 Saunders SR, Fitzgerald C, Rogers T, Dudar C, McKillop H. A test of several methods of skeletal age estimation using a documented archaeological sample. Can Soc Forens Sci J 1992; 25: 97-118
  • 90 Baccino E, Ubelaker DH, Hayek LA, Zerilli A. Evaluation of seven methods of estimating age at death from mature human skeletal remains. J Forensic Sci 1999; 44: 931-936
  • 91 Megyesi MS, Ubelaker DH, Sauer NJ. Test of the Lamendin aging method on two historic skeletal samples. Am J Phys Anthropol 2006; 131: 363-367
  • 92 Fazekas I, Kósa F. Forensic fetal osteology. (No Title) 1978 Available from: https://cir.nii.ac.jp/crid/1130282272135032064
  • 93 Kósa F. Age estimation from the fetal skeleton. Age markers in the human skeleton. 1989
  • 94 Kleiber M. Röntgenatlas der normalen Hand im Kindesalter. 3rd ed. Stuttgart, Germany: Thieme; 2006
  • 95 Haglund WD, Sorg MH. Forensic taphonomy: the postmortem fate of human remains. 1997
  • 96 Ubelaker DH. Radiocarbon analysis of human remains: a review of forensic applications. J Forensic Sci 2014; 59: 1466-1472
  • 97 Ubelaker DH, Buchholz BA, Stewart JEB. Analysis of artificial radiocarbon in different skeletal and dental tissue types to evaluate date of death. J Forensic Sci 2006; 51: 484-488
  • 98 Ermida C, Rosa J, Cunha E, Ferreira MT. Postmortem interval estimation of human skeletonized remains through luminol chemiluminescence. Int J Legal Med. 2024 Available from: https://link.springer.com/article/10.1007/s00414-024-03343-8
  • 99 Ermida C, Cunha E, Ferreira MT. Luminol and the postmortem interval estimation – influence of taphonomic factors. Int J Legal Med 2024; 138: 1109-1116
  • 100 Ermida C, Navega D, Cunha E. Luminol chemiluminescence: contribution to postmortem interval determination of skeletonized remains in Portuguese forensic context. Int J Legal Med 2017; 131: 1149-1153
  • 101 Introna F, Di Vella G, Campobasso CP. Determination of postmortem interval from old skeletal remains by image analysis of luminol test results. J Forensic Sci 1999; 44: 535-538
  • 102 Klein A, Feudel E, Türk E, Püschel K, Gehl A. Lumineszenz nach Luminolanwendung. Rechtsmedizin 2007; 3: 146-152
  • 103 Verhoff MA, Wiesbrock UO, Kreutz K. Macroscopic findings for the exclusion of a forensic relevant soil embedded resting period in skeletal remains – an approach based upon literature. Arch Kriminol 2004; 213: 1-14
  • 104 Liversidge HM. Controversies in age estimation from developing teeth. Ann Hum Biol 2015; 42: 397-406
  • 105 Fins P, Pereira ML, Afonso A, Pérez-Mongiovi D, Caldas IM. Chronology of mineralization of the permanent mandibular second molar teeth and forensic age estimation. Forensic Sci Med Pathol 2017; 13: 272-277