Subscribe to RSS
DOI: 10.1055/a-2513-0574
Präventionsstrategien gegen Brände und thermische Verletzungen im Operationssaal
Strategies for Preventing Fires and Thermal Injuries in the Operating Room
Zusammenfassung
Hintergrund
Thermische Verletzungen und Brände im Interventionsraum stellen ein erhebliches Risiko für Patienten dar, insbesondere durch den Einsatz energiebasierter Geräte wie monopolare Diathermie. Eine FDA-Studie über einen Zeitraum von 20 Jahren dokumentierte über 3500 Verletzungen und 178 Todesfälle, größtenteils verursacht durch Verbrennungen. Die Hauptursachen für Brände im Interventionsraum lassen sich durch das „Feuerdreieck“ erklären: Entzündungsquellen, Brennstoffe und Oxidationsmittel. Monopolare Diathermie und Laser fungieren als Entzündungsquellen, während alkoholbasierte Desinfektionsmittel Brennstoffe liefern. Sauerstoff und Lachgas erhöhen als Oxidationsmittel das Brandrisiko.
Material und Methode
Diese Übersichtsarbeit basiert auf einer Literaturrecherche und der Analyse von Patientenfällen mit thermischen Verletzungen. Ziel ist es, schwerwiegende Folgen zu verdeutlichen und Präventionsmaßnahmen aufzuzeigen.
Ergebnis
Die Ergebnisse unterstreichen die Notwendigkeit einer multidisziplinären Herangehensweise. Wichtige Strategien sind die Reduktion der Sauerstoffkonzentration und der Einsatz alternativer Desinfektionsmittel. Durch gezielte Schulungen des OP-Teams und die Implementierung von „Fire Risk Assessment Tools“ lässt sich die Patientensicherheit deutlich erhöhen.
Schlussfolgerung
Es zeigt sich, dass ein umfassendes Risikomanagement sowie die Entwicklung spezifischer Protokolle und Schulungen erforderlich sind, um thermische Verletzungen im Interventionsraum zu verhindern und das Risiko für Patienten langfristig zu reduzieren.
Abstract
Background
Thermal injuries and operating room fires pose significant risks to patients, especially when energy-based devices like monopolar diathermy are used. A study conducted by the FDA over 20 years reported over 3,500 injuries and 178 deaths, mostly caused by burns. The main causes of operating room fires can be explained by the "fire triangle": ignition sources, fuels, and oxidizers. Monopolar diathermy and lasers act as ignition sources, while alcohol-based disinfectants provide fuel. As oxidizers, oxygen and nitrous oxide further increase the risk of fire.
Method
This review is based on a literature analysis and case vignettes of patients with thermal injuries. It aims to highlight the severe consequences of such injuries and outline preventive measures.
Results
The findings underscore the need for a multidisciplinary approach. Key strategies include reducing oxygen concentration and using alternative disinfectants. Targeted training for the surgical team, along with the use of “Fire Risk Assessment Tools”, can substantially improve patient safety.
Conclusion
In conclusion, comprehensive risk management, the development of specific protocols, and team training are essential to prevent thermal injuries and sustainably reduce patient risk in the operating room.
Schlüsselwörter
Feuer - Prävention - Patientensicherheit - thermische Verletzungen - Brände im OperationssaalPublication History
Received: 21 October 2024
Accepted: 27 December 2024
Article published online:
24 February 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Schröder D. HF im OP: Unter Strom. Medizintechnik. 2009
- 2 Overbey DM, Townsend NT, Chapman BC. et al. Surgical Energy-Based Device Injuries and Fatalities Reported to the Food and Drug Administration. J Am Coll Surg 2015; 221: 197-205 e1
- 3 Mortada H, Abu Alqam R, AlNojaidi TF. et al. Preventing and Managing Operating Room Fires in Plastic Surgery: A Review of Incidence, Risk Factors, and Recommendations With Case Experiences. J Burn Care Res 2024; 45: 887-894
- 4 Alani H, Southwell-Keely J, Moisidis E. et al. Prevention of surgical fires in facial plastic surgery. Australasian Journal of Plastic Surgery 2019; 2: 40-49
- 5 Ressing M, Blettner M, Klug SJ. Systematic literature reviews and meta-analyses: part 6 of a series on evaluation of scientific publications. Dtsch Arztebl Int 2009; 106: 456-463
- 6 Calder LA, Héroux DL, Bernard CA. et al. Surgical Fires and Burns: A 5-Year Analysis of Medico-legal Cases. J Burn Care Res 2019; 40: 886-892
- 7 Jones TS, Black IH, Robinson TN. et al. Operating Room Fires. Anesthesiology 2019; 130: 492-501
- 8 Saaiq M, Zaib S, Ahmad S. Electrocautery burns: experience with three cases and review of literature. Ann Burns Fire Disasters 2012; 25: 203-206
- 9 Bae HS, Lee MY, Park JU. Intraoperative burn from a grounding pad of electrosurgical device during breast surgery: A CARE-compliant case report. Medicine (Baltimore) 2018; 97: e8370
- 10 Link T. Guidelines in Practice: Electrosurgical Safety. AORN J 2021; 114: 60-72
- 11 Bifulco P, Massa R, Cesarelli M. et al. Investigating the role of capacitive coupling between the operating table and the return electrode of an electrosurgery unit in the modification of the current density distribution within the patientsʼ body. Biomed Eng Online 2013; 12: 80
- 12 Sultan SA, Alahmadi B, Mohabbat A. Hand Skin Burn as a Complication of Electrosurgery Use in Prone Position in Surgery: A Case Report. Cureus 2020; 12: e10101
- 13 Lipscomb GH, Givens VM. Preventing electrosurgical energy-related injuries. Obstet Gynecol Clin North Am 2010; 37: 369-377
- 14 Culp WC, Kimbrough BA, Luna S. et al. Mitigating operating room fires: development of a carbon dioxide fire prevention device. Anesth Analg 2014; 118: 772-775
- 15 Reyes RJ, Smith AA, Mascaro JR. et al. Supplemental oxygen: ensuring its safe delivery during facial surgery. Plast Reconstr Surg 1995; 95: 924-928
- 16 Yardley IE, Donaldson LJ. Surgical fires, a clear and present danger. Surgeon 2010; 8: 87-92
- 17 Poore SO, Sillah NM, Mahajan AY. et al. Patient safety in the operating room: II. Intraoperative and postoperative. Plast Reconstr Surg 2012; 130: 1048-1058
- 18 Bonnet A, Devienne M, De Broucker V. et al. Operating room fire: Should we mistrust alcoholic antiseptics?. Ann Chir Plast Esthet 2015; 60: 255-261
- 19 Cowles CE, Culp WC. Prevention of and response to surgical fires. BJA Educ 2019; 19: 261-266
- 20 Shepperd JR. Defending a “Never Event”. J Healthc Risk Manag 2017; 37: 17-22
- 21 Jones EL, Overbey DM, Chapman BC. et al. Operating Room Fires and Surgical Skin Preparation. J Am Coll Surg 2017; 225: 160-165
- 22 Stoelting RK, Feldman J, Cowles C. et al. Surgical fire injuries continue to occur: prevention may require more cautious use of oxygen. APSF Newsletter 2012; 26: 43
- 23 Spigelman AD, Swan JR. Skin antiseptics and the risk of operating theatre fires. ANZ J Surg 2005; 75: 556-558
- 24 Mehta SP, Bhananker SM, Posner KL. et al. Operating room fires: a closed claims analysis. Anesthesiology 2013; 118: 1133-1139
- 25 Barnes AM, Frantz RA. Do oxygen-enriched atmospheres exist beneath surgical drapes and contribute to fire hazard potential in the operating room?. AANA J 2000; 68: 153-161
- 26 Lampotang S, Gravenstein N, Paulus DA. et al. Reducing the incidence of surgical fires: supplying nasal cannulae with sub-100% O2 gas mixtures from anesthesia machines. Anesth Analg 2005; 101: 1407-1412
- 27 Institute E. New clinical guide to surgical fire prevention. Patients can catch fire--hereʼs how to keep them safer. Health Devices 2009; 38: 314-332
- 28 Engel SJ, Patel NK, Morrison CM. et al. Operating room fires: part II. optimizing safety. Plast Reconstr Surg 2012; 130: 681-689
- 29 Meneghetti SC, Morgan MM, Fritz J. et al. Operating room fires: optimizing safety. Plast Reconstr Surg 2007; 120: 1701-1708
- 30 Rinder CS. Fire safety in the operating room. Curr Opin Anaesthesiol 2008; 21: 790-795
- 31 Greco RJ, Gonzalez R, Johnson P. et al. Potential dangers of oxygen supplementation during facial surgery. Plast Reconstr Surg 1995; 95: 978-984
- 32 Orhan-Sungur M, Komatsu R, Sherman A. et al. Effect of nasal cannula oxygen administration on oxygen concentration at facial and adjacent landmarks. Anaesthesia 2009; 64: 521-526
- 33 Kung TA, Kong SW, Aliu O. et al. Effects of vacuum suctioning and strategic drape tenting on oxygen concentration in a simulated surgical field. J Clin Anesth 2016; 28: 56-61
- 34 Tao JP, Hirabayashi KE, Kim BT. et al. The efficacy of a midfacial seal drape in reducing oculofacial surgical field fire risk. Ophthalmic Plast Reconstr Surg 2013; 29: 109-112
- 35 Christiana Care Surgical fire risk assessment. https://christianacare.org/forhealthprofessionals/education/fireriskassessment/ last accessed on 07.09.2024
- 36 Kezze I, Zoremba N, Rossaint R. et al. Risks and prevention of surgical fires : A systematic review. Anaesthesist 2018; 67: 426-447
- 37 Carmack D, Hegeman E, Vizurraga D. Orthopaedic Operating Room Fire Risks: FDA Database and Literature Review. JBJS Rev. 2023 11. 2
- 38 Fires ARbtASoATFoOR. Practice Advisory for the Prevention and Management of Operating Room Fires. Anesthesiology 2008; 108: 786-801
- 39 Sorgel CA, Cai A, Schmid R. et al. Perspectives on the Current State of Bioprinted Skin Substitutes for Wound Healing. Biomedicines. 2023 11. 2678