Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis
DOI: 10.1055/a-2515-0227
DOI: 10.1055/a-2515-0227
feature
Cobalt-Catalyzed Regioselective Hydroformylation of Allylic Alcohol Esters
We are grateful for financial support from the National Key Research and Development Program of China (Grant No. 2022YFA1506100), the National Natural Science Foundation of China (Grant Nos. 22371294, 21821002, 22203034), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB0610000), the Beijing National Laboratory for Molecular Sciences (BNLMS202304), the Shanghai Science and Technology Committee (Grant No. 20XD1425000) and the State Key Laboratory of Elemento-Organic Chemistry, Nankai University (Grant No. 202201).

Abstract
Aliphatic aldehydes are important building blocks in organic synthesis due to their high reactivity and versatility. Herein, we report a simple, mild and efficient method for the hydroformylation of allyl alcohol esters under cobalt catalysis. This procedure offers good functional group tolerance, moderate to good product yields and exclusive chemo- and regioselectivity, making it an attractive method to prepare aldehydes with linear selectivity.
Key words
hydroformylation - synthesis gas - cobalt - functionalized olefins - allyl alcohol derivativesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2515-0227.
- Supporting Information
Publication History
Received: 14 November 2024
Accepted after revision: 11 January 2025
Accepted Manuscript online:
11 January 2025
Article published online:
24 February 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Börner A, Franke R. Hydroformylation: Fundamentals, Processes, and Applications in Organic Synthesis. Wiley-VCH; Weinheim: 2016
- 1b Franke R, Selent D, Börner A. Chem. Rev. 2012; 112: 5675
- 2 Roelen O. (Chemische Verwertungsgesellschaft Oberhausen m.b.H.) German Patent DE 849548, 1938/1952, US Patent 2327066, 1943 ; Chem. Abstr. 1944, 38, 3631
- 3a Klosin J, Landis CR. Acc. Chem. Res. 2007; 40: 1251
- 3b Pospech J, Fleischer I, Franke R, Buchholz S, Beller M. Angew. Chem. Int. Ed. 2013; 52: 2852
- 3c Brezny AC, Landis CR. Acc. Chem. Res. 2018; 51: 2344
- 3d Kumar R, Chikkali SH. J. Organomet. Chem. 2022; 960: 122231
- 3e Holzknecht DR, Van Alstine AK, Russell BP, Vinyard DJ, Donnarumma F, Chambers MB. J. Am. Chem. Soc. 2024; 146: 19183
- 4 Heck RF, Breslow DS. J. Am. Chem. Soc. 1961; 83: 4023
- 5 Slaugh LH, Mullineaux RD. J. Organomet. Chem. 1968; 13: 469
- 6a Uhlemann M, Doerfelt S, Börner A. Tetrahedron Lett. 2013; 54: 2209
- 6b You C, Li X, Yang Y, Yang Y.-S, Tan X, Li S, Wei B, Lv H, Chung L.-W, Zhang X. Nat. Commun. 2018; 9: 2045
- 6c Li S, Li Z, You C, Li X, Yang J, Lv H, Zhang X. Org. Lett. 2020; 22: 1108
- 6d Li S, Zhang D, Zhang R, Bai S, Zhang X. Angew. Chem. Int. Ed. 2022; 61: e202206577
- 6e Zhang D, Wen J, Zhang X. Chem. Sci. 2022; 13: 7215
- 6f Li C, Li Z, Tan K, Liu G. Eur. J. Org. Chem. 2023; 26: e202300398
- 7a Evans D, Osborn JA, Wilkinson G. J. Chem. Soc. A 1968; 3133
- 7b Pruett RL, Smith JA. J. Org. Chem. 1969; 34: 327
- 7c Boogaerts II. F, White DF. S, Cole-Hamilton DJ. Chem. Commun. 2010; 46: 2194
- 8a Hood DM, Johnson RA, Carpenter AE, Younker JM, Vinyard DJ, Stanley GG. Science 2020; 367: 542
- 8b MacNeil CS, Mendelsohn LN, Pabst TP, Hierlmeier G, Chirik PJ. J. Am. Chem. Soc. 2022; 144: 19219
- 8c Crause C, Bennie L, Damoense L, Dwyer CL, Grove C, Grimmer N, van Rensburg WJ, Kirk MM, Mokheseng KM, Otto S, Steynberg PJ. Dalton Trans. 2003; 2036
- 8d Polas A, Wilton-Ely JD. E. T, Slawin AM. Z, Foster DF, Steynberg PJ, Green MJ, Cole-Hamilton DJ. Dalton Trans. 2003; 4669
- 8e Achonduh G, Yang Q, Alper H. Tetrahedron 2015; 71: 1241
- 8f Delolo FG, Yang J, Neumann H, Dos Santos EN, Gusevskaya EV, Beller M. ACS Sustainable Chem. Eng. 2021; 9: 5148
- 8g Zhang B, Kubis C, Franke R. Science 2022; 377: 1223
- 9 Hebrard F, Kalck P. Chem. Rev. 2009; 109: 4272
- 10a Wang H, Jie X, Chong Q, Meng F. Nat. Commun. 2024; 15: 3427
- 10b Wang H, Jie X, Su T, Wu Q, Kuang J, Sun Z, Zhao Y, Chong Q, Guo Y, Zhang Z, Meng F. J. Am. Chem. Soc. 2024; 146: 23476
- 10c Lin C, Zhang J, Sun Z, Guo Y, Chong Q, Zhang Z, Meng F. Angew. Chem. Int. Ed. 2024; 63: e202405290
- 10d Wang L, Lin C, Chong Q, Zhang Z, Meng F. Nat. Commun. 2023; 14: 4825
- 10e Liang Z, Wang L, Wang Y, Wang L, Chong Q, Meng F. J. Am. Chem. Soc. 2023; 145: 3588
- 10f Huang W, Bai J, Guo Y, Chong Q, Meng F. Angew. Chem. Int. Ed. 2023; 62: e202219257
- 10g Lu W, Zhao Y, Meng F. J. Am. Chem. Soc. 2022; 144: 5233
- 10h Wang L, Lu W, Zhang J, Chong Q, Meng F. Angew. Chem. Int. Ed. 2022; 61: e202205624
- 10i Wang L, Wang L, Li M, Chong Q, Meng F. J. Am. Chem. Soc. 2021; 143: 12755
- 10j Huang W, Meng F. Angew. Chem. Int. Ed. 2021; 60: 2694
- 10k Zhang H, Huang W, Wang T, Meng F. Angew. Chem. Int. Ed. 2019; 58: 11049
- 11a Li M, Chong Q, Meng F. Tetrahedron Lett. 2023; 121: 154479
- 11b Zhang J, Wang L, Chong Q, Meng F. Asian J. Org. Chem. 2023; 12: e202200720
- 12 Delolo FG, Kubis C, Zhang B, Neumann H, Dos Santos EN, Gusevskaya EV, Beller M. Catal. Sci. Technol. 2024; 14: 1524
For reviews on hydroformylation of alkenes, see:
For selected examples of Rh-catalyzed hydroformylations, see:
For selected examples of Co-catalyzed hydroformylations, see: