Subscribe to RSS
DOI: 10.1055/a-2525-7267
A Novel Synthesis of Thioesters by Palladium-Catalyzed Carbonylative Coupling Reactions of Amides with Disulfides
We gratefully acknowledge the financial support from the Henan Province Key Research and Development Promotion Special (212102310258).

Abstract
A novel and simple catalytic protocol for the synthesis of thioesters from pyridinamides and disulfides has been developed, where pyridinamide was used as a cheap, efficient and relatively safe carbonyl source. Diverse substituted pyridinamides are capable of coupling with diaryl disulfides via N–C/S–S cleavage to produce the desirable thioesters in moderate to good yields. This procedure employs convenient conditions and accommodates a wide range of amide substrates, offering a straightforward and novel pathway to prepare various thioesters without the use of toxic thiols or carbon monoxide gas, while also avoiding the need for costly solid carbon monoxide alternatives. Furthermore, the utilization of pyridinamide as a carbonyl source offers a valuable enhancement for the synthesis of thioesters from amides, which have been relatively rare until now.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2525-7267.
- Supporting Information
Publication History
Received: 23 December 2024
Accepted after revision: 27 January 2025
Accepted Manuscript online:
27 January 2025
Article published online:
11 March 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Taylor JE, Bull SD, Williams JM. J. Chem. Soc. Rev. 2012; 41: 2109
- 2 Denes F, Schiesser CH, Renaud P. Chem. Soc. Rev. 2013; 42: 7900
- 3 Liu X-L, Shi Y, Kang JS, Oelschlaeger P, Yang K-W. ACS. Med. Chem. Lett. 2015; 6: 660
- 4 Wei Y-F, Gao W-C, Chang H-H, Jiang F. Org. Chem. Front. 2022; 9: 6684
- 5 Liebeskind LS, Srogl J. J. Am. Chem. Soc. 2000; 122: 1260
- 6 Yan K, Yang D, Wei W. Org. Biomol. Chem. 2015; 13: 7323
- 7 Albuquerque DY, Teixeira WK. O, Sacramento M, Alves D, Santi C, Schwab RS. J. Org. Chem. 2022; 87: 595
- 8 Qi X, Bao Z-P, Yao X-T, Wu X-F. Org. Lett. 2020; 22: 6671
- 9 Qi X, Bao Z-P, Wu X-F. Org. Chem. Front. 2020; 7: 885
- 10 Kim Y, Song K-H, Lee S. Org. Chem. Front. 2020; 7: 2938
- 11 Xiao Y-M, Zhao Y, Li J-Q, Yuan J-W, Yang L-R, Mao P, Mai W-P. New J. Chem. 2023; 47: 17092
- 12 Wu X, Li J, Xia S, Zhu C, Xie J. J. Org. Chem. 2022; 87: 10003
- 13 Wu K, Wang T-Z, Liang Y-F. Adv. Synth. Catal. 2023; 365: 4233
- 14 Zhou J-Y, Zhu YM. Eur. J. Org. Chem. 2021; 2452
- 15 Xiao Y-M, Lv W-W, Yuan J-W, Yang L-R, Mao P, Mai W-P. ChemistrySelect 2022; 7: e202200914
- 16 Mai W-P, Zhao Y, Lv M-X, Zhang W-R, Xiao Y-M, Yuan J-W, Yang L-R. Eur. J. Org. Chem. 2024; e202400026
- 17 Wang X, Wang B, Yin X, Yu W, Liao Y, Ye L, Wang M, Hu L, Liao J. Angew. Chem. Int. Ed. 2019; 58: 12264
- 18 Wang Q, Liu L, Dong J-Y, Tian Z, Chen T. New J. Chem. 2019; 43: 9384
- 19 Lin S-M, Zhang J-L, Chen J-X, Gao WX, Ding JC, Su WK, Wu HY. Braz. Chem. Soc. 2010; 21: 1616
- 20 Xie S, Su L, Mo M, Zhou W, Zhou Y, Dong J. J. Org. Chem. 2021; 86: 739
- 21 Mai W-P, Liu Y, Sui H-D, Xiao Y-M, Mao P, Lu K. Eur. J. Org. Chem. 2019; 7814
- 22 Bie F, Liu X, Cao H, Shi Y, Zho T, Szostak M, Liu C. Org. Lett. 2021; 23: 8098
- 23 Soria-Castro SM, Andrada DM, Caminos DA, Argüello JE, Peñéñory AB. J. Org. Chem. 2017; 82: 11464
- 24 Moon HK, Sung GH, Kim BR, Park JK, Yoon Y-J, Yoon HJ. Adv. Synth. Catal. 2016; 358: 1725
- 25 Chen B, Wu X-F. Org. Biomol. Chem. 2021; 19: 9654
- 26 Basu B, Paul S, Nanda AK. Green Chem. 2010; 12: 767
- 27 Park N, Park K, Jang M, Lee S. J. Org. Chem. 2011; 76: 4371
- 28 Xiao F-H, Yuan S-S, Wang D-H, Liu S, Huang H, Deng G-J. Adv. Synth. Catal. 2019; 361: 3331