Subscribe to RSS
DOI: 10.1055/a-2555-1879
Correlation between Anthropometric Parameters and Anterior Cruciate Ligament, Hamstring Tendon, and Posterior Horn of Medial and Lateral Meniscus Sizes
Funding None.
Abstract
Anterior cruciate ligament (ACL) reconstruction is commonly performed in orthopedic surgery. Hamstring autografts are frequently used as a graft option for the ACL; however, a clear consensus on optimal graft size is lacking. Here, we aimed to determine the mean ACL, hamstring tendon, and posterior horn meniscal sizes in a Saudi population to determine whether correlations exist between anthropometric data and the widths of the ACL, hamstring tendons (specifically the gracilis and semitendinosus tendons), and medial and lateral meniscal posterior horns. Cross-sectional study is the study design. This study examined 705 knee magnetic resonance images to obtain the following data: ACL proximal origin width, mid-fiber width, distal insertion widths and lengths (in millimeters), semitendinosus and gracilis widths (mm), and posterior horn widths of the bilateral menisci (mm). Anthropometric data included age, sex, weight, height, and body mass index. The mean ± standard deviation of proximal, mid-fiber, and distal ACL attachment widths were 8.4 ± 2.4, 9.9 ± 2.4, and 13.5 ± 2.7 mm, respectively. The mean ACL length was 30.8 ± 4.5 mm, while the mean semitendinosus and gracilis widths were 4.5 ± 1 and 3.3 mm, respectively. The mean medial and lateral meniscus posterior horn widths were 14.1 ± 2.7 and 9.3 ± 1.3 mm, respectively. Height and weight were significantly positively correlated with ACL width and length (p < 0.010) semitendinosus and gracilis tendon (p < 0.010) and posterior horn menisci (p < 0.010) widths. The mean ACL width and length, hamstring tendon (gracilis and semitendinosus) width, and posterior horn width of both menisci were positively correlated with an individual's height and weight. The level of evidence is IV.
Keywords
anterior cruciate ligament - hamstring tendons - meniscus - magnetic resonance images - anthropometric parametersPublication History
Received: 05 August 2024
Accepted: 10 March 2025
Accepted Manuscript online:
11 March 2025
Article published online:
11 April 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Duthon VB, Barea C, Abrassart S, Fasel JH, Fritschy D, Ménétrey J. Anatomy of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 2006; 14 (03) 204-213
- 2 Matsumoto H, Suda Y, Otani T, Niki Y, Seedhom BB, Fujikawa K. Roles of the anterior cruciate ligament and the medial collateral ligament in preventing valgus instability. J Orthop Sci 2001; 6 (01) 28-32
- 3 Buerba RA, Boden SA, Lesniak B. Graft selection in contemporary anterior cruciate ligament reconstruction. J Am Acad Orthop Surg 2021; 5 (10) e21.00230
- 4 Grasgruber P, Cacek J, Kalina T, Sebera M. The role of nutrition and genetics as key determinants of the positive height trend. Econ Hum Biol 2014; 15: 81-100
- 5 Challa S, Satyaprasad J. Hamstring graft size and anthropometry in South Indian population. J Clin Orthop Trauma 2013; 4 (03) 135-138
- 6 Tan JL, Chang PC, Mitra AK, Tay BK. Anthropometry of anterior cruciate ligament in Singaporean Chinese. Ann Acad Med Singap 1998; 27 (06) 776-779
- 7 Thomas S, Bhattacharya R, Saltikov JB, Kramer DJ. Influence of anthropometric features on graft diameter in ACL reconstruction. Arch Orthop Trauma Surg 2013; 133 (02) 215-218
- 8 Saowaprut S, Tanpowpong T, Piyaskulkaew C. Correlation of graft position, knee laxity and clinical outcome: comparison with native anterior cruciate ligament using magnetic resonance imaging study. J Med Assoc Thai 2009; 92 (04) 510-516
- 9 Guenther D, Irarrázaval S, Albers M. et al. Area of the tibial insertion site of the anterior cruciate ligament as a predictor for graft size. Knee Surg Sports Traumatol Arthrosc 2017; 25 (05) 1576-1582
- 10 Csintalan RPIM, Inacio MC, Funahashi TT. Incidence rate of anterior cruciate ligament reconstructions. Perm J 2008; 12 (03) 17-21
- 11 Murray MM, Martin SD, Martin TL, Spector M. Histological changes in the human anterior cruciate ligament after rupture. J Bone Joint Surg Am 2000; 82 (10) 1387-1397
- 12 Ferretti A. To heal or not to heal: the ACL dilemma. J Orthop Traumatol 2020; 21 (01) 11
- 13 Paschos NK, Howell SM. Anterior cruciate ligament reconstruction: principles of treatment. EFORT Open Rev 2017; 1 (11) 398-408
- 14 Feller JA, Webster KE. A randomized comparison of patellar tendon and hamstring tendon anterior cruciate ligament reconstruction. Am J Sports Med 2003; 31 (04) 564-573
- 15 Anderson AF, Dome DC, Gautam S, Awh MH, Rennirt GW. Correlation of anthropometric measurements, strength, anterior cruciate ligament size, and intercondylar notch characteristics to sex differences in anterior cruciate ligament tear rates. Am J Sports Med 2001; 29 (01) 58-66
- 16 Dienst M, Schneider G, Altmeyer K. et al. Correlation of intercondylar notch cross sections to the ACL size: a high resolution MR tomographic in vivo analysis. Arch Orthop Trauma Surg 2007; 127 (04) 253-260
- 17 Mishra S, Mylarappa A, Satapathy D, Samal S. Morphometric analysis of anatomy of anterior cruciate ligament of knee and its attachments - a cadaveric study in Indian population. Malays Orthop J 2021; 15 (03) 8-14
- 18 Pontoh LA, Rahyussalim AJ, Widodo W, Fiolin J, Rhatomy S. Anthropometric study as a predictor of anterior cruciate ligament sizes in Asian Indonesian population. J Orthop Surg (Hong Kong) 2021; 29 (01) 23 094990211000462
- 19 Brown JA, Brophy RH, Franco J. et al. Avoiding allograft length mismatch during anterior cruciate ligament reconstruction: patient height as an indicator of appropriate graft length. Am J Sports Med 2007; 35 (06) 986-989
- 20 Denti M, Bigoni M, Randelli P. et al. Graft-tunnel mismatch in endoscopic anterior cruciate ligament reconstruction. Intraoperative and cadaver measurement of the intra-articular graft length and the length of the patellar tendon. Knee Surg Sports Traumatol Arthrosc 1998; 6 (03) 165-168
- 21 Aljuhani WS, Alamri SG, Alsharif SA, Annaim MM. Correlation between body mass index and quadruple hamstring autograft size. J Musculoskelet Surg Res 2019; 3: 200
- 22 Atbaşi Z, Erçin E, Erdem Y, Emre TY, Atilla HA, Parlak A. Correlation between body mass index and quadrupled hamstring tendon autograft size in ACL reconstruction. Joints 2017; 4 (04) 198-201
- 23 Kumar S, Kumar H, Singh PP. et al. Quadrupled hamstring graft diameter adequacy in anterior cruciate ligament reconstruction using patient anthropometry: a prospective cohort study in Indian males. Cureus 2021; 13 (06) e15920
- 24 Weiler A, Wagner M, Kittl C. The posterior horn of the lateral meniscus is a reliable novel landmark for femoral tunnel placement in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 2018; 26 (05) 1384-1391
- 25 Erbagci H, Gumusburun E, Bayram M, Karakurum G, Sirikci A. The normal menisci: in vivo MRI measurements. Surg Radiol Anat 2004; 26 (01) 28-32
- 26 Dhananjaya KV, Murlimanju BV, Poornima V. et al. In vivo morphometry of menisci of the knee in South Indians: a preliminary study. Biomed J 2014; 37 (01) 14-17