Subscribe to RSS
DOI: 10.1055/a-2785-2464
N-Heterocyclic Selone-Generated Selenium-Centered Radical for Covalent Radical Catalysis
Authors
Financial supports from the National Natural Science Foundation of China (No. 22071269), Pearl River Recruitment Program of Talent (No. 2019QN01L149), and Guangdong Provincial Key Laboratory of Construction Foundation (No. 2023B1212060022).

Abstract
Covalent radical catalysis represents an emerging synthetic paradigm that exploits open-shell radical species as catalysts to drive chemical transformations. By enabling selective manipulation of highly reactive radical intermediates via controlled addition–elimination sequences, this approach offers a mild and versatile route for constructing complex cyclic frameworks with high efficiency and precision. This highlight article briefly summarizes recent advances in this area, with emphasis on our development of redox-active N-heterocyclic selones (NHSs) as catalysts. These catalysts facilitate a radical-catalyzed [2σ + 2π] cycloaddition platform, providing direct access to 1,3-bicyclohexanes—geometrically congruent bioisosteres of meta-substituted benzene.
Keywords
Covalent radical catalysis - Bicyclo[2.1.1]hexane - Bioisostere - Selenium radical - PhotocatalysisPublication History
Received: 08 December 2025
Accepted after revision: 09 January 2026
Article published online:
30 January 2026
© 2026. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Anastas PT, Kirchhoff MM. Acc Chem Res 2002; 35: 686
- 2 Shaikh IR. J Catal 2014; 2014: 402860
- 3 Kolbe H. Ann Chem Pharm 1848; 64: 339
- 4 Yan M, Lo JC, Edwards JT, Baran PS. J Am Chem Soc 2016; 138: 12692
- 5 Verschueren RH, De Borggraeve WM. Molecules 2019; 24: 2122
- 6 Tay NES, Lehnherr D, Rovis T. Chem Rev 2022; 122: 2487
- 7 Malapit CA, Prater MB, Cabrera-Pardo JR. et al. Chem Rev 2022; 122: 3180
- 8 Morselli G, Reber C, Wenger OS. J Am Chem Soc 2025; 147: 11608
- 9 Silvi M, Melchiorre P. Nature 2018; 554: 41
- 10 Lassaletta JM. Nat Commun 2020; 11: 3787
- 11 Wang J-P, Zong M-H, Li N. Chem Catal 2024; 4: 100933
- 12 Xiao W, Wu J. ChemCatChem 2023; 15: e202300541
- 13 Phang YL, Zhang F-L, Wang Y-F. ARKIVOC 2024; 202312052
- 14 Feldman KS, Romanelli AL, Ruckle RE, Miller RF. J Am Chem Soc 1988; 110: 3300
- 15 Miura K, Fugami K, Oshima K, Utimoto K. Tetrahedron Lett 1988; 29: 5135
- 16 Hashimoto T, Kawamata Y, Maruoka K. Nat Chem 2014; 6: 702
- 17 Xu A-Q, Zhang F-L, Ye T, Yu Z-X, Wang Y-F. CCS Chem 2019; 1: 504
- 18 Wang C-L, Wang J, Jin J-K. et al. Science 2023; 382: 1056
- 19 Ding Z, Liu Z, Wang Z. et al. J Am Chem Soc 2022; 144: 8870
- 20 Archer G, Song K, Médebielle M, Merad J. ChemPhotoChem 2023; 7: e202300096
- 21 Zhao Q, Chen J, Zhou X, Yu X, Chen J, Xiao W. Chem – Eur J 2019; 25: 8024
- 22 Chen D-F, Chrisman CH, Miyake GM. ACS Catal 2020; 10: 2609
- 23 Archer G, Cavalère P, Médebielle M, Merad J. Angew Chem Int Ed 2022; 61: e202205596
- 24 Iwama T, Matsumoto H, Ito T, Shimizu H, Kataoka T. Chem Pharm Bull 1998; 46: 913
- 25 Liske A, Verlinden K, Buhl H, Schaper K, Ganter C. Organometallics 2013; 32: 5269
- 26 Kamal A, Iqbal MA, Bhatti HN, Ghaffar A. J Coord Chem 2022; 75: 1915
- 27 Teh WP, Obenschain DC, Black BM, Michael FE. J Am Chem Soc 2020; 142: 16716
- 28 Zhang S, Wang X, Su Y, Qiu Y, Zhang Z, Wang X. Nat Commun 2014; 5: 4127
- 29 Lin K, Luo-Wei C-R, Gao Y, Lan J, Zhu T. J Am Chem Soc 2025; 147: 31521