Subscribe to RSS
DOI: 10.1055/a-2791-8016
Silicon as a Strategic Element in Carbohydrate Chemistry: Glycomimetic Design, Reductive Migration, and Ring Editing
Authors
This work was supported by the National Science Foundation (CHE- 2246828). This work utilized the Alpine high performance computing resource at the University of Colorado Boulder. Alpine is jointly funded by the University of Colorado Boulder, the University of Colorado Anschutz, and Colorado State University and with support from NSF grants OAC-2201538 and OAC-2322260.

Abstract
Silicon offers a powerful yet underexplored handle for re-engineering carbohydrate structure and function. This Synpacts highlights recent advances in the synthesis and reactivity of Si-linked glycomimetics. First, a reductive intramolecular O → C silyl migration from C2 silyl ethers to C1 delivers 1,2-cis C–Si glycosides across diverse mono- and disaccharides with high anomeric control. A systematic variation of the reagent, counterion, solvent, and temperature delineates conditions that favor migration over competing elimination. Second, complementary anionic opening of glycal epoxides with aryl-substituted silicon nucleophiles furnishes 1,2-trans C–Si linkages cleanly while suppressing Peterson-type olefination. We further show that saccharide chirality can be relayed to silicon: monohydrosilanes undergo kinetic resolution under the transfer conditions, enabling access to configurationally defined silicon stereocenters. Beyond linkage construction, an oxidative ring contraction of anomeric metal/metalloid glycosides converts hexoses to pentose-derived γ-lactones under mild, stereospecific conditions, whereas β-anomers diverge to C2 ketones, revealing a stereoelectronic switch. Computations map the competition between (1,3)-retro-Brook transfer and Peterson elimination, identify a low-barrier Berry pseudorotation within a pentacoordinate oxasiletanide manifold that renders the transfer stereoretentive at silicon, and rationalize temperature-dependent pathways. Together, these results provide design rules and practical transformations for constructing Si-linked glycomimetics, installing silicon stereocenters, and editing carbohydrate ring size.
Publication History
Received: 11 November 2025
Accepted after revision: 19 January 2026
Article published online:
30 January 2026
© 2026. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Ernst B, Magnani JL. Nat Rev Drug Discov 2009; 8: 661-677
- 2 Sattin S, Bernardi A. In: Carbohydrate Chemistry: Chemical and Biological Approaches. Pilar Rauter A, Lindhorst TK, Queneau Y. , eds. Vol. 41. The Royal Society of Chemistry; 2015
- 3 Leusmann S, Ménová P, Shanin E, Titz A, Rademacher C. Chem Soc Rev 2023; 52: 3663-3740
- 4 Tiwari B, Pandey RP, Hussain N. Carbohydr Res 2025; 552: 109477
- 5 Wang SS, Gao X, Solar VD. et al. Cell Chem Biol 2018; 25: 1519.e1515-1532.e1515
- 6 Xu B, Unione L, Sardinha J. et al. Angew Chem Int Ed 2014; 53: 9597-9602
- 7 Panayides J-L, Riley DL, Hasenmaile F, van Otterlo WAL. RSC Med Chem 2024; 15: 3286-3344
- 8 Choutka J, Kratochvíl M, Císařová I, Pohl R, Kaminský J, Parkan K. Org Biomol Chem 2022; 20: 7613-7621
- 9 Pedretti V, Veyrières A, Sinaÿ P. Tetrahedron 1990; 46: 77-88
- 10 Franz AK, Wilson SO. J Med Chem 2013; 56: 388-405
- 11 Ramesh R, Reddy DS. J Med Chem 2018; 61: 3779-3798
- 12 Mori T, Kumano T, He H. et al. Nat Commun 2021; 12: 6294
- 13 Mao J, Chen M, Zhong Y, Song R-J. Org Biomol Chem 2025; 23: 59-77
- 14 Mydock-McGrane L, Cusumano Z, Han Z. et al. J Med Chem 2016; 59: 9390-9408
- 15 Meanwell NA. J Med Chem 2011; 54: 2529-2591
- 16 Tacke R, Popp F, Müller B. et al. ChemMedChem 2008; 3: 152-164
- 17 Zhu F, Rodriguez J, Yang T. et al. J Am Chem Soc 2017; 139: 17908-17922
- 18 Zhu F, Rourke MJ, Yang T, Rodriguez J, Walczak MA. J Am Chem Soc 2016; 138: 12049-12052
- 19 Petit A, Flygare J, Miller AT, Winkel G, Ess DH. Org Lett 2012; 14: 3680
- 20 Shelar SV, Davis T, Ryan N, Fisch K, Walczak MA. J Am Chem Soc 2024; 146: 29285-29291
- 21 Dalton JJ, Bernal Sánchez A, Kelly AT, Fettinger JC, Franz AK. ACS Catal 2024; 14: 1005-1012
- 22 Stork G, Kim G. J Am Chem Soc 1992; 114: 1087-1088
- 23 Xu L-W, Li L, Lai G-Q, Jiang J-X. Chem Soc Rev 2011; 40: 1777-1790
- 24 Huang Y-H, Wu Y, Zhu Z. et al. Angew Chem Int Ed 2022; 61: e202113052
- 25 An K, Ma W, Liu L-C. et al. Nat Commun 2022; 13: 847
- 26 Chen S, Zhu J, Ke J, Li Y, He C. Angew Chem Int Ed 2022; 61: e202117820
- 27 Yuan W, Zhu X, Xu Y, He C. Angew Chem Int Ed 2022; 61: e202204912
- 28 Still WC. J Org Chem 1976; 41: 3063-3064
- 29 Tamao K, Kawachi A, Ito Y. J Am Chem Soc 1992; 114: 3989-3990
- 30 Xue W, Shishido R, Oestreich M. Angew Chem Int Ed 2018; 57: 12141-12145
- 31 Sommer LH, Mason R. J Am Chem Soc 1965; 87: 1619-1620
- 32 Omote M, Tokita T, Shimizu Y, Imae I, Shirakawa E, Kawakami Y. J Organomet Chem 2000; 611: 20-25
- 33 Strohmann C, Bindl M, Fraaß VC, Hörnig J. Angew Chem Int Ed 2004; 43: 1011-1014
- 34 Strohmann C, Hörnig J, Auer D. Chem Commun 2002; 766-767
- 35 Oh H-S, Imae I, Kawakami Y, Shanmuga Sundara Raj S, Yamane T. J Organomet Chem 2003; 685: 35-43
- 36 Colomer E, Corriu R. J Chem Soc Chem Commun 1976; 176-177
- 37 Oestreich M, Auer G, Keller M. Eur J Org Chem 2005; 2005: 184-195
- 38 Shelar S, Ryan N, Davis T, Walczak MA. Org Lett 2025; 27: 7159-7163
- 39 Ager DJ. Org Reac; 1-223
- 40 Staden LFv. Gravestock D, Ager DJ. Chem Soc Rev 2002; 31: 195-200
- 41 Moser WH. Tetrahedron 2001; 57: 2065-2084
- 42 Tromans J, Zhang B, Golding BT. Chem Eur J 2024; 30: e202302708
- 43 Das M, Manvar A, Jacolot M, Blangetti M, Jones RC, O'Shea DF. Chem Eur J 2015; 21: 8737-8740
- 44 Hudrlik PF, Agwaramgbo ELO, Hudrlik AM. J Org Chem 1989; 54: 5613-5618
- 45 Trindle C, Hwang J-T, Carey FA. J Org Chem 1973; 38: 2664-2669
- 46 Couzijn EPA, Slootweg JC, Ehlers AW, Lammertsma K. J Am Chem Soc 2010; 132: 18127-18140