Semin Hear 2008; 29(3): 242-258
DOI: 10.1055/s-0028-1082031
© Thieme Medical Publishers

Learning about Tinnitus from an Animal Model

Thomas J. Brozoski1 , Carol A. Bauer1
  • 1Division of Otolaryngology, Head and Neck Surgery, Southern Illinois University School of Medicine, Springfield, Illinois
Further Information

Publication History

Publication Date:
19 August 2008 (online)

ABSTRACT

Several animal models of tinnitus have been developed in the past 20 years. The premise on which these models are based is that chronic tinnitus is most likely a primitive hearing disorder. Because no evidence indicates that higher-order cognitive skills are required to experience tinnitus, it is also likely that animals such as laboratory rats can experience tinnitus. Chronic tinnitus in humans commonly emerges after peripheral auditory damage caused by exposure to loud sound, ototoxic agents, or aging. Tinnitus can be induced in animals using the same treatments. A significant advantage of using animals to study tinnitus is that the etiology of their disorder can be carefully controlled in a laboratory setting, a difficult task in human clinical studies. Although animals cannot describe their tinnitus verbally, their perception of sound, both objective and subjective, can be measured using psychophysical procedures. Furthermore, sensory processing and brain function can be determined with great detail in animals using a variety of measures. Over the past decade we have used our animal model of tinnitus to examine many fundamental aspects of tinnitus, including its sensory features, the time course of development, interactions with aging, neurophysiological correlates from cochlea to brain, and pharmacological treatment.

REFERENCES

  • 1 Dobie R A. A review of randomized clinical trials in tinnitus.  Laryngoscope. 1999;  109 1202-1211
  • 2 Meikle M B, Creedon T A, Griest S E. Tinnitus archive 2004, second edition. Available at: http://www.tinnitusArchive.org/ Accessed July 14, 2008
  • 3 Nondahl D M, Cruickshanks K J, Wiley T L, Klein R, Klein B E, Tweed T S. Prevalence and 5-year incidence of tinnitus among older adults: the epidemiology of hearing loss study.  J Am Acad Audiol. 2002;  13 323-331
  • 4 Ries P W. Prevalence and characteristics of persons with hearing trouble: United States, 1990–91.  Vital Health Stat 10. 1994;  (188) 1-75
  • 5 Benson V, Marano M A. Current estimates from the national health interview survey, 1995.  Vital Health Stat 10. 1998;  (199) 1-428
  • 6 Axelsson A, Ringdahl A. Tinnitus—a study of its prevalence and characteristics.  Br J Audiol. 1989;  23 53-62
  • 7 Cooper Jr J C. Health and nutrition examination survey of 1971–75: Part II. Tinnitus, subjective hearing loss, and well-being.  J Am Acad Audiol. 1994;  5 37-43
  • 8 Epidemiology of tinnitus, Medical Research Council's Institute of Hearing Research.  Ciba Found Symp. 1981;  85 16-34
  • 9 Coles R R, Hallam R S. Tinnitus and its management.  Br Med Bull. 1987;  43 983-998
  • 10 Davis A, Rafaie E A. Epidemiology of tinnitus. In: Tyler RS Tinnitus Handbook. San Diego; Singular Publishing Group 2000: 13-14
  • 11 Sindhusake D, Mitchell P, Newall P, Golding M, Rochtchina E, Rubin G. Prevalence and characteristics of tinnitus in older adults: the Blue Mountains Hearing Study.  Int J Audiol. 2003;  42 289-294
  • 12 Stouffer J L, Tyler R S. Characterization of tinnitus by tinnitus patients.  J Speech Hear Disord. 1990;  55 439-453
  • 13 Shulman A. Clinical classification of subjective idiopathic tinnitus.  J Laryngol Otol Suppl. 1981;  (4) 102-106
  • 14 Shulman A. A final common pathway for tinnitus—the medial temporal lobe system.  Int Tinnitus J. 1995;  1 115-126
  • 15 Bauer C A. Animal models of tinnitus.  Otolaryngol Clin North Am. 2003;  36 267-285
  • 16 Bauer C A, Brozoski T J, Myers K. Primary afferent dendrite degeneration as a cause of tinnitus.  J Neurosci Res. 2007;  85 1489-1498
  • 17 Bauer C A, Brozoski T J, Myers K S. Acoustic injury and TRPV1 expression in the cochlear spiral ganglion.  Int Tinnitus J. 2007;  13 21-28
  • 18 Bauer C A, Brozoski T J, Rojas R, Boley J, Wyder M. Behavioral model of chronic tinnitus in rats.  Otolaryngol Head Neck Surg. 1999;  121 457-462
  • 19 Brozoski T J, Bauer C A. The effect of dorsal cochlear nucleus ablation on tinnitus in rats.  Hear Res. 2005;  206 227-236
  • 20 Brozoski T J, Bauer C A, Caspary D M. Elevated fusiform cell activity in the dorsal cochlear nucleus of chinchillas with psychophysical evidence of tinnitus.  J Neurosci. 2002;  22 2383-2390
  • 21 Brozoski T J, Ciobanu L, Bauer C A. Central neural activity in rats with tinnitus evaluated with manganese-enhanced magnetic resonance imaging (MEMRI).  Hear Res. 2007;  228 168-179
  • 22 Bauer C A, Brozoski T J. Assessing tinnitus and prospective tinnitus therapeutics using a psychophysical animal model.  J Assoc Res Otolaryngol. 2001;  2 54-64
  • 23 Brozoski T J, Spires T J, Bauer C A. Vigabatrin, a GABA transaminase inhibitor, reversibly eliminates tinnitus in an animal model.  J Assoc Res Otolaryngol. 2007;  8 105-118
  • 24 Eggermont J J, Roberts L E. The neuroscience of tinnitus.  Trends Neurosci. 2004;  27 676-682
  • 25 Moller A R. Similarities between severe tinnitus and chronic pain.  J Am Acad Audiol. 2000;  11 115-124
  • 26 Tonndorf J. The analogy between tinnitus and pain: a suggestion for a physiological basis of chronic tinnitus.  Hear Res. 1987;  28 271-275
  • 27 Jastreboff P J, Brennan J F, Coleman J K, Sasaki C T. Phantom auditory sensation in rats: an animal model for tinnitus.  Behav Neurosci. 1988;  102 811-822
  • 28 Stebbins W. Animal Psychophysics. New York, NY; Appleton, Century, Crofts 1970
  • 29 Smith J. Conditioned suppression as an animal psychophysical technique. In: Stebbins WC Animal Psychophysics. New York, NY; Appleton-Century-Crofts 1970: 125-159
  • 30 Penner M J, Brauth S, Hood L. The temporal course of the masking of tinnitus as a basis for inferring its origin.  J Speech Hear Res. 1981;  24 257-261
  • 31 Guitton M J, Caston J, Ruel J, Johnson R M, Pujol R, Puel J L. Salicylate induces tinnitus through activation of cochlear NMDA receptors.  J Neurosci. 2003;  23 3944-3952
  • 32 Jastreboff P J, Brennan J F, Sasaki C T. An animal model for tinnitus.  Laryngoscope. 1988;  98 280-286
  • 33 Lobarinas E, Sun W, Cushing R, Salvi R. A novel behavioral paradigm for assessing tinnitus using schedule-induced polydipsia avoidance conditioning (SIP-AC).  Hear Res. 2004;  190 109-114
  • 34 Ruttiger L, Ciuffani J, Zenner H P, Knipper M. A behavioral paradigm to judge acute sodium salicylate-induced sound experience in rats: a new approach for an animal model on tinnitus.  Hear Res. 2003;  180 39-50
  • 35 Kaltenbach J A, Afman C E. Hyperactivity in the dorsal cochlear nucleus after intense sound exposure and its resemblance to tone-evoked activity: a physiological model for tinnitus.  Hear Res. 2000;  140 165-172
  • 36 Liberman M C. Central projections of auditory-nerve fibers of differing spontaneous rate. I. Anteroventral cochlear nucleus.  J Comp Neurol. 1991;  313 240-258
  • 37 Ryugo D K, Rouiller E M. Central projections of intracellularly labeled auditory nerve fibers in cats: morphometric correlations with physiological properties.  J Comp Neurol. 1988;  271 130-142
  • 38 Lockwood A H, Burkard R F, Salvi R J. Imaging tinnitus. In: Snow JB Jr Tinnitus: Theory and Management. Hamilton, Canada; BC Decker 2004: 255-264
  • 39 Melcher J R, Sigalovsky I S, Guinan Jr J J, Levine R A. Lateralized tinnitus studied with functional magnetic resonance imaging: abnormal inferior colliculus activation.  J Neurophysiol. 2000;  83 1058-1072
  • 40 de Kleine E, Lanting C, Bartels H, Langers D, van Dijk P. Cortical and subcortical fMRI of unilateral tinnitus. Advances in tinnitus assessment, treatment and neuroscience basis . Presented at: Advances in Tinnitus Assessment, Treatment & Neuroscience Basis June 22–24, 2007 Grand Island, NY;
  • 41 Osaki Y, Nishimura H, Takasawa M et al.. Neural mechanism of residual inhibition of tinnitus in cochlear implant users.  Neuroreport. 2005;  16 1625-1628
  • 42 Pautler R G. Biological applications of manganese-enhanced magnetic resonance imaging.  Methods Mol Med. 2006;  124 365-386
  • 43 Silva A C, Lee J H, Aoki I, Koretsky A P. Manganese-enhanced magnetic resonance imaging (MEMRI): methodological and practical considerations.  NMR Biomed. 2004;  17 532-543
  • 44 Yu X, Wadghiri Y Z, Sanes D H, Turnbull D H. In vivo auditory brain mapping in mice with Mn-enhanced MRI.  Nat Neurosci. 2005;  8 961-968
  • 45 Milatovic D, Yin Z, Gupta R C et al.. Manganese induces oxidative impairment in cultured rat astrocytes.  Toxicol Sci. 2007;  98 198-205
  • 46 Carr C E, Fujita I, Konishi M. Distribution of GABAergic neurons and terminals in the auditory system of the barn owl.  J Comp Neurol. 1989;  286 190-207
  • 47 Fisher S K, Davies W E. GABA and its related enzymes in the lower auditory system of the guinea pig.  J Neurochem. 1976;  27 1145-1155
  • 48 Kemmer M, Vater M. The distribution of GABA and glycine immunostaining in the cochlear nucleus of the mustached bat (Pteronotus parnellii).  Cell Tissue Res. 1997;  287 487-506
  • 49 Palombi P S, Caspary D M. GABA inputs control discharge rate primarily within frequency receptive fields of inferior colliculus neurons.  J Neurophysiol. 1996;  75 2211-2219
  • 50 Park T J, Pollak G D. GABA shapes a topographic organization of response latency in the mustache bat's inferior colliculus.  J Neurosci. 1993;  13 5172-5187
  • 51 Pfeuffer J, Tkac I, Choi I Y et al.. Localized in vivo 1H NMR detection of neurotransmitter labeling in rat brain during infusion of [1–13C] D-glucose.  Magn Reson Med. 1999;  41 1077-1083
  • 52 Tkac I, Starcuk Z, Choi I Y, Gruetter R. In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time.  Magn Reson Med. 1999;  41 649-656
  • 53 Mattson R H, Petroff O, Rothman D, Behar K. Vigabatrin: effects on human brain GABA levels by nuclear magnetic resonance spectroscopy.  Epilepsia. 1994;  35(Suppl 5) S29-S32
  • 54 Novotny Jr E J, Fulbright R K, Pearl P L, Gibson K M, Rothman D L. Magnetic resonance spectroscopy of neurotransmitters in human brain.  Ann Neurol. 2003;  54(Suppl 6) S25-S31
  • 55 Bauer C A, Brozoski T J. Gabapentin. In: Langguth B, Hajak G, Kleinjung T, Cacace A, Møller AR Tinnitus: Pathophysiology and Treatment. New York, NY; Elsevier 2007: 287-301
  • 56 Zapp J J. Gabapentin for the treatment of tinnitus: a case report.  Ear Nose Throat J. 2001;  80 114-116
  • 57 Bauer C A, Brozoski T J. Effect of gabapentin on the sensation and impact of tinnitus.  Laryngoscope. 2006;  116 675-681
  • 58 Witsell D L, Hannley M T, Stinnet S, Tucci D L. Treatment of tinnitus with gabapentin: a pilot study.  Otol Neurotol. 2007;  28 11-15
  • 59 Piccirillo J F, Finnell J, Vlahiotis A, Chole R A, Spitznagel Jr E. Relief of idiopathic subjective tinnitus: is gabapentin effective?.  Arch Otolaryngol Head Neck Surg. 2007;  133 390-397

Thomas J BrozoskiPh.D. 

Division of Otolaryngology, Head and Neck Surgery, Southern Illinois University School of Medicine

P.O. Box 19629, SIU School of Medicine, Springfield, IL 62794-9629

Email: tbrozoski@siumed.edu