ABSTRACT
Whether induced by infection, inflammation, ischemia, and/or surgical injury, peritoneal adhesions are the leading cause of pelvic pain, bowel obstruction, and infertility. Although some patients develop limited scar tissues, others for unknown reasons develop severe adhesions from seemingly equal procedures. Additionally in the same patient, adhesions develop at one surgical site but not in another. The mechanisms underlying the predisposition to form scars as well as their site specificity are unknown. Because a large number of intraperitoneal surgical procedures are performed each day, many patients are at risk of developing postoperative adhesions. As such, understanding the nature of molecular events and their mechanisms of action is essential, and in the absence of such information, attempts to prevent patients from developing adhesions will remain an empirical process. An unprecedented advancement in surgical techniques have resulted in minimizing peritoneal tissue injury that cause adhesion formation. Increased understanding of the cellular and molecular events that lead to scar tissue formation has also led to the identification of many biologically active molecules with the potential of regulating inflammatory and immune responses, angiogenesis, and tissue remodeling, events that are central to normal peritoneal wound healing and adhesion formation. This article attempts to highlight some of the key molecules (i.e., the transforming growth factor family and its regulatory mechanisms) that are recognized to regulate peritoneal wound repair and adhesion formation. Such understanding of peritoneal biology not only will assist us to better manage patients with adhesions but also will assist those with endometriosis and malignant diseases that affect the peritoneal cavity.
KEYWORDS
Peritoneum - wound repair - adhesions - growth factors - cytokines - chemokines - proteases - clinical - molecular
REFERENCES
1 Diamond M P, Schwartz L B. Prevention of Adhesion Development . In: Sutton C, Diamond MP Endoscopic Surgery for Gynecologists, 2nd ed. London, United Kingdom; W.B. Saunders 1994: 398-406
2
Lower A M, Hawthorn R J, Ellis H, O'Brien F, Buchan S, Crowe A M.
The impact of adhesions on hospital readmissions over ten years after 8849 open gynaecological operations: an assessment from the Surgical and Clinical Adhesions Research Study.
BJOG.
2000;
107
855-862
3
Lower A M, Hawthorn R J, Clark D Surgical and Clinical Research (SCAR) Group et al..
Adhesion-related readmissions following gynaecological laparoscopy or laparotomy in Scotland: an epidemiological study of 24 046 patients.
Hum Reprod.
2004;
19
1877-1885
4
Diamond M P, Freeman M L.
Clinical implications of postsurgical adhesions.
Hum Reprod Update.
2001;
7
567-576
5
Practice Committee of the American Society for Reproductive Medicine .
Control and prevention of peritoneal adhesions in gynecologic surgery.
Fertil Steril.
2006;
86(Suppl 5)
S1-S5
6
Zeng Q, Yu Z, You J, Zhang Q.
Efficacy and safety of Seprafilm for preventing postoperative abdominal adhesion: systematic review and meta-analysis.
World J Surg.
2007;
31
2125-2131
7
Al-Jaroudi D, Tulandi T.
Adhesion prevention in gynecologic surgery.
Obstet Gynecol Surv.
2004;
59
360-370
8
Johns A.
Evidence-based prevention of post-operative adhesions.
Hum Reprod Update.
2001;
7
577-579
9
Chegini N.
Peritoneal molecular environment, adhesion formation and clinical implication.
Front Biosci.
2002;
7
e91-e115
10
Menke N B, Ward K R, Witten T M, Bonchev D G, Diegelmann R F.
Impaired wound healing.
Clin Dermatol.
2007;
25
19-25
11
Rivera A E, Spencer J M.
Clinical aspects of full-thickness wound healing.
Clin Dermatol.
2007;
25
39-48
12 Clark R FA. Wound repair. Overview and general consideration . In: Clark RAF The Molecular Biology of Wound Repair, 2nd ed. New York, NY; Plenum Press 1996: 3-50
13
Holmdahl L, Ivarsson L M.
The role of cytokines, coagulation and fibrinolysis in peritoneal tissue repair.
Eur J Surg.
1999;
165
1012-1019
14
Muller S A, Treutner K H, Tietze L et al..
Efficacy of adhesion prevention and impact on wound healing of intraperitoneal phospholipids.
J Surg Res.
2001;
96
68-74
15
Furie B, Furie B C.
Thrombus formation in vivo.
J Clin Invest.
2005;
115
3355-3362
16
Gaffney P J.
Fibrin degradation products. A review of structures found in vitro and in vivo.
Ann N Y Acad Sci.
2001;
936
594-610
17
Lijnen H R.
Elements of the fibrinolytic system.
Ann N Y Acad Sci.
2001;
936
226-236
18
Herrick S, Blanc-Brude O, Gray A, Laurent G.
Fibrinogen.
Int J Biochem Cell Biol.
1999;
31
741-746
19
Bennett J S.
Platelet-fibrinogen interactions.
Ann N Y Acad Sci.
2001;
936
340-354
20
Clemetson K J, Clemetson J M.
Platelet collagen receptors.
Thromb Haemost.
2001;
86
189-197
21
Holly S P, Larson M K, Parise L V.
Multiple roles of integrins in cell motility.
Exp Cell Res.
2000;
261
69-74
22
Blobe G C, Schiemann W P, Lodish H F.
Role of transforming growth factor beta in human disease.
N Engl J Med.
2000;
342
1350-1358
23
Heldin C H.
Development and possible clinical use of antagonists for PDGF and TGF-b.
Ups J Med Sci.
2004;
109
165-178
24
Wynn T A.
Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases.
J Clin Invest.
2007;
117
524-529
25
Li J, Chen J, Kirsner R.
Pathophysiology of acute wound healing.
Clin Dermatol.
2007;
25
9-18
26
Raja , Sivamani K, Garcia M S, Isseroff R R.
Wound re-epithelialization: modulating keratinocyte migration in wound healing.
Front Biosci.
2007;
12
2849-2868
27
Fitzpatrick F A, Soberman R.
Regulated formation of eicosanoids.
J Clin Invest.
2001;
107
1347-1351
28
Massague J, Gomis R R.
The logic of TGF-beta signaling.
FEBS Lett.
2006;
580
2811-2820
29
Feng X H, Derynck R.
Specificity and versatility in TGF-b signaling through Smads.
Annu Rev Cell Dev Biol.
2005;
21
659-693
30
ten Dijke P, Arthur H M.
Extracellular control of TGF-b signalling in vascular development and disease.
Nat Rev Mol Cell Biol.
2007;
8
857-869
31
Rifkin D B.
Latent transforming growth factor-b (TGF-b) binding proteins: orchestrators of TGF-b availability.
J Biol Chem.
2005;
280
7409-7412
32
Todorovic V, Jurukovski V, Chen Y, Fontana L, Dabovic B, Rifkin D B.
Latent TGF-beta binding proteins.
Int J Biochem Cell Biol.
2005;
37
38-41
33
Sterner-Kock A, Thorey I S, Koli K et al..
Disruption of the gene encoding the latent transforming growth factor-beta binding protein 4 (LTBP-4) causes abnormal lung development, cardiomyopathy, and colorectal cancer.
Genes Dev.
2002;
16
2264-2273
34
Chaudhry S S, Cain S A, Morgan A, Dallas S L, Shuttleworth C A, Kielty C M.
Fibrillin-1 regulates the bioavailability of TGF-beta1.
J Cell Biol.
2007;
176
355-367
35
Sheppard D.
Integrin-mediated activation of latent transforming growth factor.
Cancer Metastasis Rev.
2005;
24
395-402
36
Yang Z, Mu Z, Dabovic B et al..
Absence of integrin-mediated TGFbeta1 activation in vivo recapitulates the phenotype of TGFbeta1-null mice.
J Cell Biol.
2007;
176
787-793
37
Sheppard D.
Integrin-mediated activation of transforming growth factor-beta(1) in pulmonary fibrosis.
Chest.
2001;
120
49S-53S
38
Sime P J, O'Reilly K M.
Fibrosis of the lung and other tissues: new concepts in pathogenesis and treatment.
Clin Immunol.
2001;
99
308-319
39
Murphy-Ullrich J E, Poczatek M.
Activation of latent TGF-b by thrombospondin-1: mechanisms and physiology.
Cytokine Growth Factor Rev.
2000;
11
59-69
40
Hyytiainen M, Penttinen C, Keski-Oja J.
Latent TGF-beta binding proteins: extracellular matrix association and roles in TGF-beta activation.
Crit Rev Clin Lab Sci.
2004;
41
233-264
41
Barbara N P, Wrana J L, Letarte M.
Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-b superfamily.
J Biol Chem.
1999;
274
584-594
42
Yu L, Border W A, Huang Y, Noble N A.
TGF-beta isoforms in renal fibrogenesis.
Kidney Int.
2003;
64
844-856
43
Branton M H, Kopp J B.
TGF-b and fibrosis.
Microbes Infect.
1999;
1
1349-1365
44
Koch R M, Roche N S, Parks W T, Ashcroft G S, Letterio J J, Roberts A B.
Incisional wound healing in transforming growth factor-b1 null mice.
Wound Repair Regen.
2000;
8
179-191
45
Crowe M J, Doetschman T, Greenhalgh D G.
Delayed wound healing in immunodeficient TGF-b1 knockout mice.
J Invest Dermatol.
2000;
115
3-11
46
Tyrone J W, Marcus J R, Bonomo S R, Mogford J E, Xia Y, Mustoe T A.
Transforming growth factor b3 promotes fascial wound healing in a new animal model.
Arch Surg.
2000;
135
1154-1159
47
Ask K, Bonniaud P, Maass K, Eickelberg O, Margetts P J, Warburton D, Groffen J, Gauldie J, Kolb M.
Progressive pulmonary fibrosis is mediated by TGF-beta isoform 1 but not TGF-beta3.
Int J Biochem Cell Biol.
2008;
40
484-495
48
Freeman M L, Saed G M, Elhammady E F, Diamond M P.
Expression of transforming growth factor beta isoform mRNA in injured peritoneum that healed with adhesions and without adhesions and in uninjured peritoneum.
Fertil Steril.
2003;
80
708-713
49
Chegini N, Kotseos K, Zhao Y et al..
Differential expression of TGF-β1 and TGF-β3 in serosal tissues of human intraperitoneal organs and peritoneal adhesions.
Hum Reprod.
2001;
6
1291-1300
50
Hobson K G, DeWing M, Ho H S, Wolfe B M, Cho K, Greenhalgh D G.
Expression of transforming growth factor beta1 in patients with and without previous abdominal surgery.
Arch Surg.
2003;
138
1249-1252
51
Chegini N, Rong H, Bennett B, Stone I K.
Peritoneal fluid cytokine and eicosanoid levels and their relation to the incidence of peritoneal adhesion.
J Soc Gynecol Investig.
1999;
6
153-157
52
Holmdahl L, Kotseos K, Bergström M, Falk P, Ivarsson M L, Chegini N.
Overproduction of transforming growth factor-beta1 (TGF-b1) is associated with adhesion formation and peritoneal fibrinolytic impairment.
Surgery.
2001;
129
626-632
53
Krause T J, Katz D, Wheeler C J, Ebner S, McKinnon R D.
Increased levels of surgical adhesions in TGFb1 heterozygous mice.
J Invest Surg.
1999;
12
31-38
54
Bonniaud P, Margetts P J, Ask K, Flanders K, Gauldie J, Kolb M.
TGF-beta and Smad3 signaling link inflammation to chronic fibrogenesis.
J Immunol.
2005;
175
5390-5395
55
Flanders K C.
Smad3 as a mediator of the fibrotic response.
Int J Exp Pathol.
2004;
85
47-64
56
Dooley S, Hamzavi J, Breitkopf K et al..
Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats.
Gastroenterology.
2003;
125
178-191
57
Hou C C, Wang W, Huang X R et al..
Ultrasound-microbubble-mediated gene transfer of inducible Smad7 blocks transforming growth factor-beta signaling and fibrosis in rat remnant kidney.
Am J Pathol.
2005;
166
761-771
58
Kopp J, Preis E, Said H et al..
Abrogation of transforming growth factor-beta signaling by SMAD7 inhibits collagen gel contraction of human dermal fibroblasts.
J Biol Chem.
2005;
280
21570-21576
59
Guo H, Leung J C, Lam M F et al..
Smad7 transgene attenuates peritoneal fibrosis in uremic rats treated with peritoneal dialysis.
J Am Soc Nephrol.
2007;
18
2689-2703
60
Wahab N A, Schaefer L, Weston B S et al..
Glomerular expression of thrombospondin-1, transforming growth factor beta and connective tissue growth factor at different stages of diabetic nephropathy and their interdependent roles in mesangial response to diabetic stimuli.
Diabetologia.
2005;
48
2650-2660
61
Daniel C, Takabatake Y, Mizui M et al..
Antisense oligonucleotides against thrombospondin-1 inhibit activation of TGF-beta in fibrotic renal disease in the rat in vivo.
Am J Pathol.
2003;
163
1185-1192
62
Streit M, Velasco P, Riccardi L et al..
Thrombospondin-1 suppresses wound healing and granulation tissue formation in the skin of transgenic mice.
EMBO J.
2000;
19
3272-3282
63
Kondou H, Mushiake S, Etani Y, Miyoshi Y, Michigami T, Ozono K.
A blocking peptide for transforming growth factor-beta1 activation prevents hepatic fibrosis in vivo.
J Hepatol.
2003;
39
742-748
64
Akhurst R J.
Large- and small-molecule inhibitors of transforming growth factor-beta signaling.
Curr Opin Investig Drugs.
2006;
7
513-521
65
Suzuki E, Kim S, Cheung H K et al..
A novel small-molecule inhibitor of transforming growth factor beta type I receptor kinase (SM16) inhibits murine mesothelioma tumor growth in vivo and prevents tumor recurrence after surgical resection.
Cancer Res.
2007;
67
2351-2359
66
Moon J A, Kim H T, Cho I S, Sheen Y Y, Kim D K.
IN-1130, a novel transforming growth factor-beta type I receptor kinase (ALK5) inhibitor, suppresses renal fibrosis in obstructive nephropathy.
Kidney Int.
2006;
70
1234-1243
67
Tojo M, Hamashima Y, Hanyu A et al..
The ALK-5 inhibitor A-83–01 inhibits Smad signaling and epithelial-to-mesenchymal transition by transforming growth factor-beta.
Cancer Sci.
2005;
96
791-800
68
DaCosta Byfield S, Major C, Laping N J, Roberts A B.
SB-505124 is a selective inhibitor of transforming growth factor-beta type I receptors ALK4, ALK5, and ALK7.
Mol Pharmacol.
2004;
65
744-752
69
Kapoun A M, Gaspar N J, Wang Y et al.
Transforming growth factor-beta receptor type 1 (TGFbetaRI) kinase activity but not p38 activation is required for TGFbetaRI-induced myofibroblasts differentiation and profibrotic gene expression.
Mol Pharmacol.
2006;
70
518-531
70
Weng H L, Ciuclan L, Liu Y et al..
Profibrogenic transforming growth factor-beta/activin receptor-like kinase 5 signaling via connective tissue growth factor expression in hepatocytes.
Hepatology.
2007;
46
1257-1270
71
Hui A Y, Dannenberg A J, Sung J J et al..
Prostaglandin E2 inhibits transforming growth factor beta 1-mediated induction of collagen alpha 1(I) in hepatic stellate cells.
J Hepatol.
2004;
41
251-258
72
Peng H, Cheung A K, Reimer L G, Kamerath C D, Leypoldt J K.
Effect of indomethacin on peritoneal protein loss in a rabbit model of peritonitis.
Kidney Int.
2001;
59
44-51
73
Tager A M, Dufour J H, Goodarzi K, Bercury S D, von Andrian U H, Luster A D.
BLTR mediates leukotriene B(4)-induced chemotaxis and adhesion and plays a dominant role in eosinophil accumulation in a murine model of peritonitis.
J Exp Med.
2000;
192
439-446
74
Haribabu B, Verghese M W, Steeber D A, Sellars D D, Bock C B, Snyderman R.
Targeted disruption of the leukotriene B(4) receptor in mice reveals its role in inflammation and platelet-activating factor-induced anaphylaxis.
J Exp Med.
2000;
192
433-438
75
Saed G M, Al-Hendy A, Salama S A, Diamond M P.
Adenovirus-mediated expression of cyclooxygenase-2 antisense reverse abnormal genetic profile of human adhesion fibroblasts.
Fertil Steril.
2008;
89(5 Suppl)
1455-1460
76
Mehrad B, Keane M P, Strieter R M.
Chemokines as mediators of angiogenesis.
Thromb Haemost.
2007;
97
755-762
77
Frangogiannis N G.
Chemokines in ischemia and reperfusion.
Thromb Haemost.
2007;
97
738-747
78
Braunersreuther V, Mach F, Steffens S.
The specific role of chemokines in atherosclerosis.
Thromb Haemost.
2007;
97
714-721
79
Ludwig A, Weber C.
Transmembrane chemokines: versatile ‘special agents’ in vascular inflammation.
Thromb Haemost.
2007;
97
694-703
80
Gerard C, Rollins B J.
Chemokines and disease.
Nat Immunol.
2001;
2
108-115
81
Horuk R.
Chemokine receptors.
Cytokine Growth Factor Rev.
2001;
12
313-335
82
Hoshino A, Kawamura Y I, Yasuhara M et al..
Inhibition of CCL1–CCR8 interaction prevents aggregation of macrophages and development of peritoneal adhesions.
J Immunol.
2007;
178
5296-5304
83
Berkkanoglu M, Zhang L, Ulukus M et al..
Inhibition of chemokines prevents intraperitoneal adhesions in mice.
Hum Reprod.
2005;
20
3047-3052
84
El-Hakim A, Chiu K Y, Sherry B, Bhuiya T, Smith A D, Lee B R.
Peritoneal and systemic inflammatory mediators of laparoscopic bowel injury in a rabbit model.
J Urol.
2004;
172
1515-1519
85
Motomura Y, Kanbayashi H, Khan W I et al..
The gene transfer of soluble VEGF type I receptor (Flt-1) attenuates peritoneal fibrosis formation in mice but not soluble TGF-beta type II receptor gene transfer.
Am J Physiol Gastrointest Liver Physiol.
2005;
288
G143-G150
86
Holsti M A, Chitnis T, Panzo R J et al..
Regulation of postsurgical fibrosis by the programmed death-1 inhibitory pathway.
J Immunol.
2004;
172
5774-5781
87
Gao Y, Luo L, He F.
Effect of monocyte chemotactic protein-1 on the intraperitoneal adhesion formation.
J Tongji Med Univ.
2000;
20
340-342
88
Larbi K Y, Dangerfield J P, Culley F J et al..
P-selectin mediates IL-13-induced eosinophil transmigration but not eotaxin generation in vivo: a comparative study with IL-4-elicited responses.
J Leukoc Biol.
2003;
73
65-73
89
Matsukawa A, Hogaboam C M, Lukacs N W, Lincoln P M, Strieter R M, Kunkel S L.
Endogenous monocyte chemoattractant protein-1 (MCP-1) protects mice in a model of acute septic peritonitis: cross-talk between MCP-1 and leukotriene B4.
J Immunol.
1999;
163
6148-6154
90
Mrstik M, Kotseos K, Ma C, Chegini N.
Increased expression of interferon-inducible protein-10 during surgically induced peritoneal injury.
Wound Repair Regen.
2003;
11
120-126
91
Fine J S, Jackson J V, Rojas-Triana A, Bober L A.
Evaluation of chemokine- and phlogistin-mediated leukocyte chemotaxis using an in vivo sponge model.
Inflammation.
2000;
24
331-346
92
Call D R, Nemzek J A, Ebong S J et al..
Differential local and systemic regulation of the murine chemokines KC and MIP2.
Shock.
2001;
15
278-284
93
Kopydlowski K M, Salkowski C A, Cody M J et al..
Regulation of macrophage chemokine expression by lipopolysaccharide in vitro and in vivo.
J Immunol.
1999;
163
1537-1544
94
Gautam S C, Noth C J, Janakiraman N, Pindolia K R, Chapman R A.
Induction of chemokine mRNA in bone marrow stromal cells: modulation by TGF-b1 and IL-4.
Exp Hematol.
1995;
23
482-491
95
Sakata Y, Chancey A L, Divakaran V G, Sekiguchi K, Sivasubramanian N, Mann D L.
Transforming growth factor-beta receptor antagonism attenuates myocardial fibrosis in mice with cardiac-restricted overexpression of tumor necrosis factor.
Basic Res Cardiol.
2008 Jan;
103
60-68
96
Nakaya I, Wada T, Furuichi K et al..
Blockade of IP-10/CXCR3 promotes progressive renal fibrosis.
Nephron Exp Nephrol.
2007;
107
e12-e21
97
Kampfer H, Paulukat J, Muhl H, Wetzler C, Pfeilschifter J, Frank S.
Lack of interferon-gamma production despite the presence of interleukin-18 during cutaneous wound healing.
Mol Med.
2000;
6
1016-1027
98
Witowski J, Thiel A, Dechend R et al..
Synthesis of C–X-C and C–C chemokines by human peritoneal fibroblasts: induction by macrophage-derived cytokines.
Am J Pathol.
2001;
158
1441-1450
99
Visser C E, Tekstra J, Brouwer-Steenbergen J J et al..
Chemokines produced by mesothelial cells: huGRO-α, IP-10, MCP-1 and RANTES.
Clin Exp Immunol.
1998;
112
270-275
100
McColl S R, Clark-Lewis I.
Inhibition of murine neutrophil recruitment in vivo by CXC chemokine receptor antagonists.
J Immunol.
1999;
163
2829-2835
101
Haslinger B, Mandl-Weber S, Sellmayer A, Sitter T.
Hyaluronan fragments induce the synthesis of MCP-1 and IL-8 in cultured human peritoneal mesothelial cells.
Cell Tissue Res.
2001;
305
79-86
102
Zeyneloglu H B, Seli E, Senturk L M, Gutierrez L S, Olive D L, Arici A.
The effect of monocyte chemotactic protein 1 in intraperitoneal adhesion formation in a mouse model.
Am J Obstet Gynecol.
1998;
179
438-443
103
Rachfal A W, Brigstock D R.
Structural and functional properties of CCN proteins.
Vitam Horm.
2005;
70
69-103
104
Ihn H.
Pathogenesis of fibrosis: role of TGF-b and CTGF.
Curr Opin Rheumatol.
2002;
14
681-685
105
Leask A, Abraham D J.
The role of connective tissue growth factor, a multifunctional matricellular protein, in fibroblast biology.
Biochem Cell Biol.
2003;
81
355-363
106
Perbal B.
CCN proteins: multifunctional signalling regulators.
Lancet.
2004;
363
62-64
107
Kelly M, Kolb M, Bonniaud P, Gauldie J.
Re-evaluation of fibrogenic cytokines in lung fibrosis.
Curr Pharm Des.
2003;
9
39-49
108
Gressner O A, Weiskirchen R, Gressner A M.
Biomarkers of hepatic fibrosis, fibrogenesis and genetic pre-disposition pending between fiction and reality.
J Cell Mol Med.
2007;
11
1031-1051
109
Gressner O A, Lahme B, Demirci I, Gressner A M, Weiskirchen R.
Differential effects of TGF-beta on connective tissue growth factor (CTGF/CCN2) expression in hepatic stellate cells and hepatocytes.
J Hepatol.
2007;
47
699-710
110
Luo X, Ding L, Chegini N.
CCNs, fibulin-1C and S100A4 expression in leiomyoma and myometrium: inverse association with TGF-beta and regulation by TGF-beta in leiomyoma and myometrial smooth muscle cells.
Mol Hum Reprod.
2006;
12
245-256
111
Page-McCaw A, Ewald A J, Werb Z.
Matrix metalloproteinases and the regulation of tissue remodelling.
Nat Rev Mol Cell Biol.
2007;
8
221-233
112
Hobeika M J, Thompson R W, Muhs B E, Brooks P C, Gagne P J.
Matrix metalloproteinases in peripheral vascular disease.
J Vasc Surg.
2007;
45
849-857
113
Hemmann S, Graf J, Roderfeld M, Roeb E.
Expression of MMPs and TIMPs in liver fibrosis—a systematic review with special emphasis on anti-fibrotic strategies.
J Hepatol.
2007;
46
955-975
114
Vartak D G, Gemeinhart R A.
Matrix metalloproteases: underutilized targets for drug delivery.
J Drug Target.
2007;
15
1-20
115
Yan C, Boyd D D.
Regulation of matrix metalloproteinase gene expression.
J Cell Physiol.
2007;
211
19-26
116
Medcalf R L.
Fibrinolysis, inflammation, and regulation of the plasminogen activating system.
J Thromb Haemost.
2007;
5(Suppl 1)
132-142
117
Paraskevas K I, Baker D M, Vrentzos G E, Mikhailidis D P.
The role of fibrinogen and fibrinolysis in peripheral arterial disease.
Thromb Res.
2008;
122
1-12
118
Schouten M, Wiersinga W J, Levi M, van der Poll T.
Inflammation, endothelium, and coagulation in sepsis.
J Leukoc Biol.
2008;
83
536-545
119
Balsara R D, Xu Z, Ploplis V A.
Targeting plasminogen activator inhibitor-1: role in cell signaling and the biology of domain-specific knock-in mice.
Curr Drug Targets.
2007;
8
982-995
120
Bertolino P, Deckers M, Lebrin F, ten Dijke P.
Transforming growth factor-beta signal transduction in angiogenesis and vascular disorders.
Chest.
2005;
128
585S-590S
121
Saed G, Zhang W, Wie K A, Yelian F D, Diamond M P.
The effect of TGF-β and hypoxia on fibronectin expression.
Reproductive Sciences.
2000;
7
348-354
122
Ma C, Tarnuzzer R W, Chegini N.
Expression of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinases in mesothelial cells and their regulation by transforming growth factor-beta1.
Wound Repair Regen.
1999;
7
477-485
123
Chegini N, Kotseos K, Zhao Y et al..
The expression of matrix metalloproteinase (MMP-1) and tissue inhibitor of MMP (TIMP-1) in serosal tissue of intraperitoneal organs and adhesions.
Fertil Steril.
2001;
76
1212-1219
124
Chegini N, Kotsesos K, Bennett B et al..
Matrix metalloproteinase (MMP-1) and tissue inhibitor of MMP (TIMP-1) in peritoneal fluids and sera, and correlation with peritoneal adhesions.
Fertil Steril.
2001;
76
1207-1211
125
Sharpe-Timms K L, Zimmer R L, Jolliff W J, Wright J W, Nothnick W B, Curry T E.
Gonadotropin-releasing hormone agonist (GnRH-a) therapy alters activity of plasminogen activators, matrix metalloproteinases, and their inhibitors in rat models for adhesion formation and endometriosis: potential GnRH-a-regulated mechanisms reducing adhesion formation.
Fertil Steril.
1998;
69
916-923
126
Agren M S, Werthén M.
The extracellular matrix in wound healing: a closer look at therapeutics for chronic wounds.
Int J Low Extrem Wounds.
2007;
6
82-97
127
Diamond M P, El-Hammady E, Wang R, Saed G.
Regulation of matrix metalloproteinase-1 and tissue inhibitor of matrix metalloproteinase-1 by dichloroacetic acid in human fibroblasts from normal peritoneum and adhesions.
Fertil Steril.
2004;
81
185-190
Nasser CheginiPh.D.
Division of Reproductive Endocrinology and Infertility, Institute for Wound Research, Department of Obstetrics and Gynecology
University of Florida, Gainesville, FL 32610
Email: cheginin@obgyn.ufl.edu