Abstract
The preparation of biaryls via oxidation of organocuprates with
easily synthesized octahydro[1,4:5,8]dimethanoanthraquinone
(DAQ) is described. The oxidative coupling of organocuprates using
DAQ was successfully employed for the preparation of highly hindered
biaryls and 9- and 10-membered macrocycles containing biaryl linkages.
The oxidative reactivity of DAQ towards organocuprates is found
to be similar to the commonly utilized quinones such as duroquinone
(DQ) and tetra-tert-butylbiphenoquinone
(BQ) and is in accord with their similar reduction potentials (measured
by an electrochemical method). The structures of the quinones are
also established with the aid of X-ray crystallography. The usage
of DAQ for biaryl synthesis is advocated owing to the ready separation
of reduced DAQ-H2 from biaryls as well as its ready-availability
in multi-gram quantities.
Key words
quinones - one-electron transfer - organocuprates - biaryls - macrocycles
References
1
Cepanec I.
Synthesis
of Biaryls
Elsevier;
London:
2004.
2a
Suzuki A.
Chem. Commun.
2005,
4759
2b
Hassan J.
Sevignon M.
Gozzi C.
Schulz E.
Lemaire M.
Chem. Rev.
2002,
102:
1359 ; and references cited therein
3a
Introduction to Molecular Electronics
Petty MC.
Bryce MR.
Bloor D.
Oxford
University Press;
New York:
1995.
3b
Organic
Electronics
Klauk H.
Wiley-VCH;
Weinheim:
2006.
4a
Cahiez G.
Moyeux A.
Buendia J.
Duplais C.
J.
Am. Chem. Soc.
2007,
129:
13788
4b
Stephen YWL.
Hughes G.
O’Shea PD.
Davies IW.
Org.
Lett.
2007,
9:
2239
4c
Cahiez G.
Chaboche C.
Mahuteau-Betzer F.
Ahr M.
Org. Lett.
2005,
7:
1943
4d
Nagano T.
Hayashi T.
Org. Lett.
2005,
7:
491
5
Miyake Y.
Wu M.
Rahman MJ.
Kuwatani Y.
Iyoda M.
J.
Org. Chem.
2006,
71:
6110
6
Krasovskiy A.
Tishkov A.
del Amo V.
Mary H.
Knochel P.
Angew.
Chem. Int. Ed.
2006,
45:
5010
7a
Surry DS.
Su X.
Fox DJ.
Franckevicius V.
Macdonald SJF.
Spring DR.
Angew. Chem. Int. Ed.
2005,
44:
1870
7b
Surry DS.
Fox DJ.
Macdonald SJF.
Spring DR.
Chem.
Commun.
2005,
2589
8 Note that the only known method for
the preparation of large macrocycles containing tetramethoxybiaryl
linkage requires the usage of stoichiometric quantity of the high-molecular-weight
tetrakis(triphenylphosphine)nickel(0), see: Semmelhack MF.
Helquist P.
Lones LD.
Keller L.
Mendelson L.
Ryono LS.
Smith JG.
Stauffer RD.
J. Am.
Chem. Soc.
1981,
103:
6460
9
Rathore R.
Bosch E.
Kochi JK.
Tetrahedron
Lett.
1994,
35:
1335
10
Rathore R.
Burns CL.
Deselnicu MI.
Denmark SE.
Bui T.
Org. Synth.
2005,
82:
1
11a
Suga K.
Maemura K.
Fujihira M.
Aoyagui S.
Bull. Chem.
Soc. Jpn.
1987,
60:
2221
11b
Bothner-By AA.
J. Am. Chem. Soc.
1951,
73:
4228
12a
Kumada K.
Pure Appl. Chem.
1980,
52:
669
12b
Rathore R.
Deselnicu MI.
Burns CL.
J. Am. Chem. Soc.
2002,
124:
14832
13a
Tashiro M.
Yamato T.
J.
Org. Chem.
1979,
44:
3037
13b
Venkatraman S.
Li C.-J.
Org. Lett.
1999,
1:
1133
13c
Chen C.
Synlett
2000,
1491
14a
Hamamoto H.
Anilkumar G.
Tohma H.
Kita Y.
Chem.
Eur. J.
2002,
8:
5377
14b
Kramer B.
Averhoff A.
Waldvogel SR.
Angew.
Chem. Int. Ed.
2002,
41:
2981
15
Ronlan A.
Parker VD.
J. Org. Chem.
1974,
39:
1014
16
Haworth RD.
Lamberton AH.
J. Chem. Soc.
1946,
1003
17
Fliedner LJJr.
Myers MJ.
Schor JM.
Pachter IJ.
J. Med. Chem.
1976,
19:
202
18
House HO.
Acc.
Chem. Res.
1976,
9:
59 ;
and references cited therein
19 The low-precision crystal structures
of DQ and BQ at r.t. are known, see CCDC database.
20 Morgenstern A. P., Schuijt C.,
Nauta W. T.; J. Chem. Soc. C; 1971, 3706
21
Zweig A.
Maurer A. H.
Roberts B. G.
J.
Org. Chem.
1967,
32:
1322
22 Crystallographic data (excluding structure
factors) for the structures reported in this paper have been deposited
with the Cambridge Crystallographic Data Centre as supplementary publication
numbers CCDC-701965, 701966, and 701967. Copies of the data can
be obtained free of charge on appli-cation to CCDC, 12 Union Road,
Cambridge CB2 1EZ, UK [E-mail: deposit@ccdc.cam.ac.uk;
Fax: +44(1223)336033 or via www.ccdc.cam.ac.uk/conts/retrieving.html].