Subscribe to RSS
DOI: 10.1055/s-0028-1083276
Inverse-Electron-Demand Diels-Alder Reactions of N-(Heteroarylsulfonyl)-1-aza-1,3-dienes Catalyzed by Chiral Lewis Acids
Publication History
Publication Date:
12 December 2008 (online)
Abstract
The feasibility of using chiral Lewis acids as catalysts to promote the inverse-electron-demand Diels-Alder reactions of 1-azadienes with vinyl ethers has been demonstrated. Two catalyst systems were identified for this reaction, both relying on the presence of a coordinating 2-pyridylsulfonyl or 8-quinolylsulfonyl group at the imine nitrogen of the 1-azadiene. The combination of a 8-quinolylsulfonyl moiety and nickel(II)/DBFOX-Ph proved to be highly efficient, allowing the synthesis of substituted piperidine derivatives in good yields, excellent endo selectivity, and enantioselectivities typically in the range of 77 to 92% ee.
Key words
Diels-Alder reactions - N-sulfonyl-1-azadienes - vinyl ethers - chiral Lewis acids - imines - asymmetric catalysis
- For a recent review on stereoselective aza-Diels-Alder reactions, see:
-
1a For a review on catalytic
asymmetric aza-Diels-Alder reactions, see:
Rowland GB.Rowland EB.Zhang Q.Antilla JC. Curr. Org. Chem. 2006, 10: 981 -
1b
Kobayashi S. In Cycloaddition Reactions in Organic SynthesisKobayashi S.Jørgensen KA. Wiley-VCH; Weinheim: 2002. Chap. 5. p.187-209 - 2 This reaction was first achieved
by Yamamoto using a stoichiometric amount of a chiral boron complex.
See:
Hattori K.Yamamoto H. J. Org. Chem. 1992, 57: 3264 -
3a
Kobayashi S.Komiyama S.Ishitani H. Angew. Chem. Int. Ed. 1998, 37: 979 -
3b
Kobayashi S.Kusakabe K.-i.Komiyama S.Ishitani H. J. Org. Chem. 1999, 64: 4220 -
3c
Kobayashi S.Kusakabe K.-i.Ishitani H. Org. Lett. 2000, 2: 1225 -
3d For the use of hydrazones
as dienophiles, see:
Kobayashi S.Ueno M.Saito S.Mizuki Y.Ishitani H.Yamashita Y. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 5476 -
3e
Yamashita Y.Mizuki Y.Kobayashi S. Tetrahedron Lett. 2005, 46: 1803 - 4
Josephsohn NS.Snapper ML.Hoveyda AH. J. Am. Chem. Soc. 2003, 125: 4018 -
5a
Yao S.Johannsen M.Hazell RG.Jørgensen KA. Angew. Chem. Int. Ed. 1998, 37: 3121 -
5b
Yao S.Saaby S.Hazell RG.Jørgensen KA. Chem. Eur. J. 2000, 6: 2435 -
5c
García Mancheño O.Gómez Arrayás R.Carretero JC. J. Am. Chem. Soc. 2004, 126: 456 -
5d
García Mancheño O.Gómez Arrayás R.Adrio J.Carretero JC. J. Org. Chem. 2007, 72: 10294 -
6a
Guillarme S.Whiting A. Synlett 2004, 711 -
6b
Di Bari L.Guillarme S.Hanan J.Henderson AP.Howard JAK.Pescitelli G.Probert MR.Salvadori P.Whiting A. Eur. J. Org. Chem. 2007, 5771 - 7
Shang D.Xin J.Liu Y.Zhou X.Liu X.Feng X. J. Org. Chem. 2008, 73: 630 - 8
Jurčík V.Arai K.Salter MM.Yamashita Y.Kobayashi S. Adv. Synth. Catal. 2008, 350: 647 -
9a
Sundén H.Ibrahem I.Eriksson L.Córdova A. Angew. Chem. Int. Ed. 2005, 44: 4877 -
9b
Akiyama T.Morita H.Fuchibe K. J. Am. Chem. Soc. 2006, 128: 13070 -
9c
Itoh J.Fuchibe K.Akiyama T. Angew. Chem. Int. Ed. 2006, 45: 4796 -
9d
Akiyama T.Tamura Y.Itoh J.Morita H.Fuchibe K. Synlett 2006, 141 -
9e
Newman CA.Antilla JC.Chen P.Predeus AV.Fielding L.Wulff WD. J. Am. Chem. Soc. 2007, 129: 7216 - 10
Jnoff E.Ghosez L. J. Am. Chem. Soc. 1999, 121: 2617 - 11
Sundararajan G.Prabagaran N.Varghese B. Org. Lett. 2001, 3: 1973 - 12
Magesh CJ.Makesh SV.Perumal PT. Bioorg. Chem. Lett. 2004, 14: 2035 - 13 For a review on the ADAR of 1-azadienes,
see:
Behforouz M.Ahmadian M. Tetrahedron 2000, 56: 5259 -
14a
Boger DL.Corbett WL.Curran TT.Kasper AM. J. Am. Chem. Soc. 1991, 113: 1713 -
14b
Boger DL.Corbett WL. J. Org. Chem. 1993, 58: 2068 ; and references cited therein - 15
Clark RC.Pfeiffer SS.Boger DL. J. Am. Chem. Soc. 2006, 128: 2587 - For recent examples on diastereoselective ADAR of 1-aza-dienes, see:
-
16a
Aversa MC.Barattucci A.Bilardo MC.Bonaccorsi P.Giannetto P. Synthesis 2003, 2241 -
16b
Berry CR.Hsung RP. Tetrahedron 2004, 60: 7629 -
16c See also:
Tarver JE.Terranova KM.Joullié MM. Tetrahedron 2004, 60: 10277 -
16d
Palacios F.Vicario J.Aparicio D. Tetrahedron Lett. 2007, 48: 6747 - 17
He M.Struble JR.Bode JW. J. Am. Chem. Soc. 2006, 128: 8418 - 18
Han B.Li J.-L.Ma C.Zhang S. J.Chen Y.-C. Angew. Chem. Int. Ed. 2008, 47: 9971 - 19 For the Cu(OTf)2-catalyzed
intramolecular ADAR of a 2-cyano-1-azadiene containing an enol ether
component, see:
Motorina IA.Grierson DS. Tetrahedron Lett. 1999, 40: 7215 -
20a
Sugimoto H.Nakamura S.Hattori M.Ozeki S.Shibata N.Toru T. Tetrahedron Lett. 2005, 46: 8941 -
20b
Nakamura S.Nakashima H.Sugimoto H.Shibata N.Toru T. Tetrahedron Lett. 2006, 47: 7599 -
20c
Morimoto H.Lu G.Aoyama N.Matsunaga S.Shibasaki M. J. Am. Chem. Soc. 2007, 129: 9588 -
20d
Nakamura S.Nakashima H.Sugimoto H.Sano H.Hattori M.Shibata N.Toru T. Chem. Eur. J. 2008, 14: 2145 -
20e
Nakamura S.Nakashima H.Yamamura A.Shibata N.Toru T. Adv. Synth. Catal. 2008, 350: 1209 -
20f
Lu G.Morimoto H.Matsunaga S.Shibasaki M. Angew. Chem. Int. Ed. 2008, 47: 6847 -
21a
Esquivias J.Gómez Arrayás R.Carretero JC. J. Org. Chem. 2005, 70: 7451 -
21b
Esquivias J.Gómez Arrayás R.Carretero JC. Angew. Chem. Int. Ed. 2006, 45: 629 -
21c
Salvador González A.Gómez Arrayás R.Carretero JC. Org. Lett. 2006, 8: 2977 -
21d
Esquivias J.Goméz Arrayás R.Carretero JC. Angew. Chem. Int. Ed. 2007, 46: 9257 -
21e
Salvador González A.Gómez Arrayás R.Rodríguez Rivero M.Carretero JC. Org. Lett. 2008, 10: 4335 - 22 For a recent communication of this
work, see:
Esquivias J.Gómez Arrayás R.Carretero JC. J. Am. Chem. Soc. 2007, 129: 1480 -
27a For
the optimized preparation of the DBFOX-Ph ligand, see:
Kanemasa S.Oderaotoshi Y.Yamamoto H.Tanaka J.Wada E.Curran DP. J. Org. Chem. 1997, 62: 6454 -
27b
Ulrich I.Oderaotoshi Y.Kanemasa S.Curran DP. Org. Synth. 2003, 80: 46 - 29 The Ni(ClO4)2˙6H2O
and DBFOX-Ph led to a complex that contains three molecules of water.
Kanemasa’s group previously observed a decrease of asymmetric
induction when the reaction is performed in the presence of molecular sieves.
See, for instance:
Itoh S.Kanemasa S. J. Am. Chem. Soc. 2002, 124: 13394 - 30 For an example of the preparation
of a chiral [1,2,4]benzo-thiadiazine-5,5-dioxide
with activity as an AMPA receptor modulator, see:
Cobley CJ.Foucher E.Lecouve J.-P.Lennon IC.Ramsdem JA.Thominot G. Tetrahedron: Asymmetry 2003, 14: 3431 - 31 See, for instance:
Desos P.Serkiz B.Morain P.Lepagnol J.Cordi A. Bioorg. Med. Chem. Lett. 1996, 6: 3003 -
35a
Stewart JJP. J. Comput. Chem. 1989, 10: 209 -
35b
Stewart JJP. J. Comput. Chem. 1989, 10: 221 - 35c HyperChem 6.02 Hypercube Inc.; Gainesville FL: 1999.
-
36a
Becke AD. J. Chem. Phys. 1993, 98: 1372 -
36b
Lee C.Yang W.Parr RG. Phys. Rev. B 1988, 37: 785 - 37
Frisch MJ.Trucks GW.Schlegel HB.Scuseria GE.Robb MA.Cheeseman JR.Montgomery JA.Vreven T.Kudin KN.Burant JC.Millam JM.Iyengar SS.Tomasi J.Barone V.Mennucci B.Cossi M.Scalmani G.Rega N.Petersson GA.Nakatsuji H.Hada M.Ehara M.Toyota K.Fukuda R.Hasegawa J.Ishida M.Nakajima T.Honda Y.Kitao O.Nakai H.Klene M.Li X.Knox JE.Hratchian HP.Cross JB.Bakken V.Adamo C.Jaramillo J.Gomperts R.Stratmann RE.Yazyev O.Austin AJ.Cammi R.Pomelli C.Ochterski JW.Ayala PY.Morokuma K.Voth GA.Salvador P.Dannenberg JJ.Zakrzewski VG.Dapprich S.Daniels AD.Strain MC.Farkas O.Malick DK.Rabuck AD.Raghavachari K.Foresman JB.Ortiz JV.Cui Q.Baboul AG.Clifford S.Cioslowski J.Stefanov BB.Liu G.Liashenko A.Piskorz P.Komaromi I.Martin RL.Fox DJ.Keith T.Al-Laham MA.Peng CY.Nanayakkara A.Challacombe M.Gill PMW.Johnson B.Chen W.Wong MW.Gonzalez C.Pople JA. Gaussian 03, Revision E.01 Gaussian Inc.; Wallingford CT: 2004. -
38a
Ditchfield R.Hehre WJ.Pople JA. J. Chem. Phys. 1971, 54: 724 -
38b
Hehre WJ.Ditchfield R.Pople JA. J. Chem. Phys. 1972, 56: 2257 -
38c
Hariharan PC.Pople JA. Theor. Chim. Acta 1973, 28: 213 -
39a
Binkley JS.Pople JA.Hehre WJ. J. Am. Chem. Soc. 1980, 102: 939 -
39b
Dobbs KD.Hehre WJ. J. Comput. Chem. 1986, 7: 359 - 40
Hay PJ.Wadt WR. J. Chem. Phys. 1985, 82: 270
References
For the synthesis of 2-pyridylsulfonyl imines 1-4 and 7-10, see ref. 21a. For the synthesis of 8-quinolylsulfonyl imines 20, 28-35, 44, 45, and 48, see ref. 22.
24In agreement with literature data, only decomposition products were obtained in the reactions of N-tosyl-, N-(2-thienylsulfonyl)-, and N-(2-pyridylsulfonyl)imines of benzaldehyde with 5 in the presence of 10 mol% of Cu(OTf)2 after 48 hours at room temperature.
25Amounts of dienophile lower than 20 equivalents led to incomplete conversions.
26Similar enantioselectivities were obtained in other solvents, such as toluene (61% ee), 1,2-dichloroethane (62% ee), tetrahydrofuran (58% ee), or 1,4-dioxane (60% ee).
28Dichloromethane proved to be the optimal solvent (DCE led to poorer endo selectivity while no reaction was observed in toluene, Et2O, or THF).
32Unit cell parameters: a = 9.4345 (2), b = 11.1796 (3), c = 21.8461 (6); space group P212121. CCDC 641861 contains the supplementary crystallographic data for this compound. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
33Critical NOE contacts for 54a and 54b are shown in Figure [³] below.
34The supplementary crystallographic data for 54b can be found in the Supporting Information of ref. 22.