Synthesis 2009(1): 113-126  
DOI: 10.1055/s-0028-1083276
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Inverse-Electron-Demand Diels-Alder Reactions of N-(Heteroarylsulfonyl)-1-aza-1,3-dienes Catalyzed by Chiral Lewis Acids

Jorge Esquivias, Inés Alonso, Ramón Gómez Arrayás*, Juan Carlos Carretero*
Departamento de Química Orgánica, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
Fax: +34(91)4973966; e-Mail: ramon.gomez@uam.es; e-Mail: juancarlos.carretero@uam.es;
Further Information

Publication History

Received 4 November 2008
Publication Date:
12 December 2008 (online)

Abstract

The feasibility of using chiral Lewis acids as catalysts to promote the inverse-electron-demand Diels-Alder reactions of 1-azadienes with vinyl ethers has been demonstrated. Two catalyst systems were identified for this reaction, both relying on the presence of a coordinating 2-pyridylsulfonyl or 8-quinolylsulfonyl group at the imine nitrogen of the 1-azadiene. The combination of a 8-quinolylsulfonyl moiety and nickel(II)/DBFOX-Ph proved to be highly efficient, allowing the synthesis of substituted piperidine derivatives in good yields, excellent endo selectivity, and enantio­selectivities typically in the range of 77 to 92% ee.

    References

  • For a recent review on stereoselective aza-Diels-Alder reactions, see:
  • 1a For a review on catalytic asymmetric aza-Diels-Alder reactions, see: Rowland GB. Rowland EB. Zhang Q. Antilla JC. Curr. Org. Chem.  2006,  10:  981 
  • 1b Kobayashi S. In Cycloaddition Reactions in Organic Synthesis   Kobayashi S. Jørgensen KA. Wiley-VCH; Weinheim: 2002.  Chap. 5. p.187-209  
  • 2 This reaction was first achieved by Yamamoto using a stoichiometric amount of a chiral boron complex. See: Hattori K. Yamamoto H. J. Org. Chem.  1992,  57:  3264 
  • 3a Kobayashi S. Komiyama S. Ishitani H. Angew. Chem. Int. Ed.  1998,  37:  979 
  • 3b Kobayashi S. Kusakabe K.-i. Komiyama S. Ishitani H. J. Org. Chem.  1999,  64:  4220 
  • 3c Kobayashi S. Kusakabe K.-i. Ishitani H. Org. Lett.  2000,  2:  1225 
  • 3d For the use of hydrazones as dienophiles, see: Kobayashi S. Ueno M. Saito S. Mizuki Y. Ishitani H. Yamashita Y. Proc. Natl. Acad. Sci. U.S.A.  2004,  101:  5476 
  • 3e Yamashita Y. Mizuki Y. Kobayashi S. Tetrahedron Lett.  2005,  46:  1803 
  • 4 Josephsohn NS. Snapper ML. Hoveyda AH. J. Am. Chem. Soc.  2003,  125:  4018 
  • 5a Yao S. Johannsen M. Hazell RG. Jørgensen KA. Angew. Chem. Int. Ed.  1998,  37:  3121 
  • 5b Yao S. Saaby S. Hazell RG. Jørgensen KA. Chem. Eur. J.  2000,  6:  2435 
  • 5c García Mancheño O. Gómez Arrayás R. Carretero JC. J. Am. Chem. Soc.  2004,  126:  456 
  • 5d García Mancheño O. Gómez Arrayás R. Adrio J. Carretero JC. J. Org. Chem.  2007,  72:  10294 
  • 6a Guillarme S. Whiting A. Synlett  2004,  711 
  • 6b Di Bari L. Guillarme S. Hanan J. Henderson AP. Howard JAK. Pescitelli G. Probert MR. Salvadori P. Whiting A. Eur. J. Org. Chem.  2007,  5771 
  • 7 Shang D. Xin J. Liu Y. Zhou X. Liu X. Feng X. J. Org. Chem.  2008,  73:  630 
  • 8 Jurčík V. Arai K. Salter MM. Yamashita Y. Kobayashi S. Adv. Synth. Catal.  2008,  350:  647 
  • 9a Sundén H. Ibrahem I. Eriksson L. Córdova A. Angew. Chem. Int. Ed.  2005,  44:  4877 
  • 9b Akiyama T. Morita H. Fuchibe K. J. Am. Chem. Soc.  2006,  128:  13070 
  • 9c Itoh J. Fuchibe K. Akiyama T. Angew. Chem. Int. Ed.  2006,  45:  4796 
  • 9d Akiyama T. Tamura Y. Itoh J. Morita H. Fuchibe K. Synlett  2006,  141 
  • 9e Newman CA. Antilla JC. Chen P. Predeus AV. Fielding L. Wulff WD. J. Am. Chem. Soc.  2007,  129:  7216 
  • 10 Jnoff E. Ghosez L. J. Am. Chem. Soc.  1999,  121:  2617 
  • 11 Sundararajan G. Prabagaran N. Varghese B. Org. Lett.  2001,  3:  1973 
  • 12 Magesh CJ. Makesh SV. Perumal PT. Bioorg. Chem. Lett.  2004,  14:  2035 
  • 13 For a review on the ADAR of 1-azadienes, see: Behforouz M. Ahmadian M. Tetrahedron  2000,  56:  5259 
  • 14a Boger DL. Corbett WL. Curran TT. Kasper AM. J. Am. Chem. Soc.  1991,  113:  1713 
  • 14b Boger DL. Corbett WL. J. Org. Chem.  1993,  58:  2068 ; and references cited therein
  • 15 Clark RC. Pfeiffer SS. Boger DL. J. Am. Chem. Soc.  2006,  128:  2587 
  • For recent examples on diastereoselective ADAR of 1-aza-dienes, see:
  • 16a Aversa MC. Barattucci A. Bilardo MC. Bonaccorsi P. Giannetto P. Synthesis  2003,  2241 
  • 16b Berry CR. Hsung RP. Tetrahedron  2004,  60:  7629 
  • 16c See also: Tarver JE. Terranova KM. Joullié MM. Tetrahedron  2004,  60:  10277 
  • 16d Palacios F. Vicario J. Aparicio D. Tetrahedron Lett.  2007,  48:  6747 
  • 17 He M. Struble JR. Bode JW. J. Am. Chem. Soc.  2006,  128:  8418 
  • 18 Han B. Li J.-L. Ma C. Zhang S. J. Chen Y.-C. Angew. Chem. Int. Ed.  2008,  47:  9971 
  • 19 For the Cu(OTf)2-catalyzed intramolecular ADAR of a 2-cyano-1-azadiene containing an enol ether component, see: Motorina IA. Grierson DS. Tetrahedron Lett.  1999,  40:  7215 
  • 20a Sugimoto H. Nakamura S. Hattori M. Ozeki S. Shibata N. Toru T. Tetrahedron Lett.  2005,  46:  8941 
  • 20b Nakamura S. Nakashima H. Sugimoto H. Shibata N. Toru T. Tetrahedron Lett.  2006,  47:  7599 
  • 20c Morimoto H. Lu G. Aoyama N. Matsunaga S. Shibasaki M. J. Am. Chem. Soc.  2007,  129:  9588 
  • 20d Nakamura S. Nakashima H. Sugimoto H. Sano H. Hattori M. Shibata N. Toru T. Chem. Eur. J.  2008,  14:  2145 
  • 20e Nakamura S. Nakashima H. Yamamura A. Shibata N. Toru T. Adv. Synth. Catal.  2008,  350:  1209 
  • 20f Lu G. Morimoto H. Matsunaga S. Shibasaki M. Angew. Chem. Int. Ed.  2008,  47:  6847 
  • 21a Esquivias J. Gómez Arrayás R. Carretero JC. J. Org. Chem.  2005,  70:  7451 
  • 21b Esquivias J. Gómez Arrayás R. Carretero JC. Angew. Chem. Int. Ed.  2006,  45:  629 
  • 21c Salvador González A. Gómez Arrayás R. Carretero JC. Org. Lett.  2006,  8:  2977 
  • 21d Esquivias J. Goméz Arrayás R. Carretero JC. Angew. Chem. Int. Ed.  2007,  46:  9257 
  • 21e Salvador González A. Gómez Arrayás R. Rodríguez Rivero M. Carretero JC. Org. Lett.  2008,  10:  4335 
  • 22 For a recent communication of this work, see: Esquivias J. Gómez Arrayás R. Carretero JC. J. Am. Chem. Soc.  2007,  129:  1480 
  • 27a For the optimized preparation of the DBFOX-Ph ligand, see: Kanemasa S. Oderaotoshi Y. Yamamoto H. Tanaka J. Wada E. Curran DP. J. Org. Chem.  1997,  62:  6454 
  • 27b Ulrich I. Oderaotoshi Y. Kanemasa S. Curran DP. Org. Synth.  2003,  80:  46 
  • 29 The Ni(ClO4)2˙6H2O and DBFOX-Ph led to a complex that contains three molecules of water. Kanemasa’s group previously observed a decrease of asymmetric induction when the reaction is performed in the presence of molecular sieves. See, for instance: Itoh S. Kanemasa S. J. Am. Chem. Soc.  2002,  124:  13394 
  • 30 For an example of the preparation of a chiral [1,2,4]benzo-thiadiazine-5,5-dioxide with activity as an AMPA receptor modulator, see: Cobley CJ. Foucher E. Lecouve J.-P. Lennon IC. Ramsdem JA. Thominot G. Tetrahedron: Asymmetry  2003,  14:  3431 
  • 31 See, for instance: Desos P. Serkiz B. Morain P. Lepagnol J. Cordi A. Bioorg. Med. Chem. Lett.  1996,  6:  3003 
  • 35a Stewart JJP. J. Comput. Chem.  1989,  10:  209 
  • 35b Stewart JJP. J. Comput. Chem.  1989,  10:  221 
  • 35c HyperChem 6.02   Hypercube Inc.; Gainesville FL: 1999. 
  • 36a Becke AD. J. Chem. Phys.  1993,  98:  1372 
  • 36b Lee C. Yang W. Parr RG. Phys. Rev. B  1988,  37:  785 
  • 37 Frisch MJ. Trucks GW. Schlegel HB. Scuseria GE. Robb MA. Cheeseman JR. Montgomery JA. Vreven T. Kudin KN. Burant JC. Millam JM. Iyengar SS. Tomasi J. Barone V. Mennucci B. Cossi M. Scalmani G. Rega N. Petersson GA. Nakatsuji H. Hada M. Ehara M. Toyota K. Fukuda R. Hasegawa J. Ishida M. Nakajima T. Honda Y. Kitao O. Nakai H. Klene M. Li X. Knox JE. Hratchian HP. Cross JB. Bakken V. Adamo C. Jaramillo J. Gomperts R. Stratmann RE. Yazyev O. Austin AJ. Cammi R. Pomelli C. Ochterski JW. Ayala PY. Morokuma K. Voth GA. Salvador P. Dannenberg JJ. Zakrzewski VG. Dapprich S. Daniels AD. Strain MC. Farkas O. Malick DK. Rabuck AD. Raghavachari K. Foresman JB. Ortiz JV. Cui Q. Baboul AG. Clifford S. Cioslowski J. Stefanov BB. Liu G. Liashenko A. Piskorz P. Komaromi I. Martin RL. Fox DJ. Keith T. Al-Laham MA. Peng CY. Nanayakkara A. Challacombe M. Gill PMW. Johnson B. Chen W. Wong MW. Gonzalez C. Pople JA. Gaussian 03, Revision E.01   Gaussian Inc.; Wallingford CT: 2004. 
  • 38a Ditchfield R. Hehre WJ. Pople JA. J. Chem. Phys.  1971,  54:  724 
  • 38b Hehre WJ. Ditchfield R. Pople JA. J. Chem. Phys.  1972,  56:  2257 
  • 38c Hariharan PC. Pople JA. Theor. Chim. Acta  1973,  28:  213 
  • 39a Binkley JS. Pople JA. Hehre WJ. J. Am. Chem. Soc.  1980,  102:  939 
  • 39b Dobbs KD. Hehre WJ. J. Comput. Chem.  1986,  7:  359 
  • 40 Hay PJ. Wadt WR. J. Chem. Phys.  1985,  82:  270 
23

For the synthesis of 2-pyridylsulfonyl imines 1-4 and 7-10, see ref. 21a. For the synthesis of 8-quinolylsulfonyl imines 20, 28-35, 44, 45, and 48, see ref. 22.

24

In agreement with literature data, only decomposition products were obtained in the reactions of N-tosyl-, N-(2-thienylsulfonyl)-, and N-(2-pyridylsulfonyl)imines of benzaldehyde with 5 in the presence of 10 mol% of Cu(OTf)2 after 48 hours at room temperature.

25

Amounts of dienophile lower than 20 equivalents led to incomplete conversions.

26

Similar enantioselectivities were obtained in other solvents, such as toluene (61% ee), 1,2-dichloroethane (62% ee), tetrahydrofuran (58% ee), or 1,4-dioxane (60% ee).

28

Dichloromethane proved to be the optimal solvent (DCE led to poorer endo selectivity while no reaction was observed in toluene, Et2O, or THF).

32

Unit cell parameters: a = 9.4345 (2), b = 11.1796 (3), c = 21.8461 (6); space group P212121. CCDC 641861 contains the supplementary crystallographic data for this compound. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

33

Critical NOE contacts for 54a and 54b are shown in Figure  [³] below.

Figure 3

34

The supplementary crystallographic data for 54b can be found in the Supporting Information of ref. 22.