Subscribe to RSS
DOI: 10.1055/s-0028-1083584
Organotrifluoroborate Salts
Publication History
Publication Date:
21 January 2009 (online)
Biographical Sketches
![](https://www.thieme-connect.de/media/synlett/200903/v273_oliveira.jpg)
Introduction
Organotrifluoroborate salts are a unique class of organoboron compounds that have emerged as promising synthetic reagents. The tetracoordinate nature of the boron in these complexes, enhanced by strong boron-fluorine bonds, was anticipated to prevent undesired typical reactions of trivalent organoborons. This, in turn, would make the organotrifluoroborates essentially a protected boronic acid or boronate ester reagents. [¹]
The most convenient method for the preparation of these compounds from boronic acids and derivatives utilizing the readily available and inexpensive KHF2 was described by Vedejs and co-workers. [²] In combination with this process, potassium organotrifluoroborates can be readily prepared by the transmetalation of organolithium or organomagnesium reagents with trialkylborates. [³] Alternatively, they can be synthesized by various catalyzed or uncatalyzed hydroborations of alkynes or alkenes. [4]
The utilization of organotrifluoroborates in organic synthesis led to the preparation of more functionalized compounds. In this way, several functional group inter-conversion reactions have been performed, [5] which expands the range of retrosynthetic pathways using organotrifluoroborates as key intermediates in complex molecule synthesis.
Abstracts
(A) The cross-coupling reaction of potassium aryltrifluoroborates with arenediazonium salts [6] can be performed at low temperatures and in absence of a base. However, the cross-coupling reaction of aryl-, alken-1-yl, alkyl-, allyl-, and alkyn-1-yltrifluoroborates with aryl halides or triflates requires the addition of a base to proceed. [7] |
![]() |
(B) Several chiral rhodium(I) complexes promoted efficiently the conjugated addition of potassium alkenyl- and aryl-trifluoroborates to α,β-unsaturated ketones to give the corresponding Michael adducts in good yields and enantiomeric excesses. [8] |
![]() |
(C) Enantiomerically pure cyclopropanes can be obtained in high yields from Suzuki-Miyaura cross-coupling reactions of potassium cyclopropyltrifluoroborates and aryl bromides with retention of the configuration. [9] |
![]() |
(D) Raeppel and co-workers developed a three-component Lewis acid-catalyzed Mannich-type reaction using potassium organo-trifluoroborates (aryl, vinyl, and allyl reagents) as an extension of the standard Petasis reaction. [¹0] |
![]() |
(E) Aryl-, heteroaryl-, alkenyl- and alkynyltrifluoroborates are rapidly converted into the corresponding iodides under mild conditions using sodium iodide in the presence of chloramine-T. The reaction is stereospecific and proceeds in moderate to excellent yields. [¹¹] |
![]() |
(F) The cross-coupling of alcohols and amines with potassium organotrifluoroborates catalyzed by copper(II) under mild and essentially neutral conditions gave the corresponding ethers and amines in moderate to good yields. A broad range of functional groups are tolerated on both of the cross-coupling partners. [¹²] |
![]() |
(G) Potassium organotrifluoroborates can also be useful precursors of boronic esters via the intermediate formation of dihalogenoborane. [¹³] |
![]() |
(H) The cross-coupling reaction of potassium organotrifluoroborates and aldehydes to access ketones under mild conditions via a Heck-type mechanism gave the corresponding ketones in good yields. [¹4] |
![]() |
-
1a
Molander GA.Figueroa R. Aldrichim. Acta 2005, 38: 49 -
1b
Stefani HA.Cella R.Vieira AS. Tetrahedron 2007, 63: 3623 -
1c
Darses S.Genet J.-P. Chem. Rev. 2008, 108: 288 -
2a
Vedejs E.Chapman RW.Fields SC.Lin S.Schrimpf MR. J. Org. Chem. 1995, 60: 3020 -
2b
Vedejs E.Fields SC.Hayashi R.Hitchcock SR.Powell DR.Schrimpf MR. J. Am. Chem. Soc. 1999, 121: 2460 - 3
Matteson DS. Tetrahedron 1989, 45: 1859 -
4a
Burgess K.Ohlmeyer MJ. Chem. Rev. 1991, 91: 1179 -
4b
Kabalka GW.Narayana C.Reddy NK. Synth. Commun. 1994, 24: 1019 -
4c
Pereira S.Srebnik M. J. Am. Chem. Soc. 1996, 118: 909 -
4d
Garrett CE.Fu GC.
J. Org. Chem. 1996, 61: 3224 -
5a
Molander GA.Ribagorda M. J. Am. Chem. Soc. 2003, 125: 11148 -
5b
Molander GA.Petrillo DE. J. Am. Chem. Soc. 2006, 128: 9634 -
5c
Molander GA.Ham J. Org. Lett. 2006, 8: 2031 -
5d
Molander GA.Figueroa R. Org. Lett. 2006, 8: 75 -
5e
Molander GA.Ellis NM.
J. Org. Chem. 2006, 71: 7491 -
5f
Molander GA.Copper DJJ. Org. Chem. 2007, 72: 3558 -
5g
Molander GA.Ham J.Canturk B. Org. Lett. 2007, 9: 821 -
5h
Molander GA.Oliveira RA. Tetrahedron Lett. 2008, 49: 1266 - 6
Darses S.Brayer J.-L.Demoute J.-P.Genet J.-P. Tetrahedron Lett. 1997, 38: 4393 - 7
Molander GA.Ellis N. Acc. Chem. Res. 2007, 40: 275 -
8a
Duursma A.Lefort L.Boogers JAF.de Vries AHM.de Vries JG.Minnaard AJ.Feringa BL. Org. Biomol. Chem. 2004, 2: 1682 -
8b
Duursma A.Boiteau J.-G.Lefort L.Boogers JAF.de Vries AHM.de Vries JG.Minnaard AJ.Feringa BL.
J. Org. Chem. 2004, 69: 8045 - 9
Fang G.-H.Yan Z.-J.Deng M.-Z. Org. Lett. 2004, 6: 357 - 10
Tremblay-Morin J.-P.Raeppel S.Gaudette F. Tetrahedron Lett. 2004, 45: 3471 -
11a
Kabalka GW.Mereddy AR. Tetrahedron Lett. 2004, 45: 343 -
11b
Kabalka GW.Mereddy AR. Tetrahedron Lett. 2004, 45: 1417 -
12a
Quach TD.Batey RA. Org. Lett. 2003, 5: 1381 -
12b
Quach TD.Batey RA. Org. Lett. 2003, 5: 4397 - 13
Kim BJ.Matteson DS. Angew. Chem. Int. Ed. 2004, 43: 3056 - 14
Pucheault M.Darses S.Genet J.-P. J. Am. Chem. Soc. 2004, 126: 15356
References
-
1a
Molander GA.Figueroa R. Aldrichim. Acta 2005, 38: 49 -
1b
Stefani HA.Cella R.Vieira AS. Tetrahedron 2007, 63: 3623 -
1c
Darses S.Genet J.-P. Chem. Rev. 2008, 108: 288 -
2a
Vedejs E.Chapman RW.Fields SC.Lin S.Schrimpf MR. J. Org. Chem. 1995, 60: 3020 -
2b
Vedejs E.Fields SC.Hayashi R.Hitchcock SR.Powell DR.Schrimpf MR. J. Am. Chem. Soc. 1999, 121: 2460 - 3
Matteson DS. Tetrahedron 1989, 45: 1859 -
4a
Burgess K.Ohlmeyer MJ. Chem. Rev. 1991, 91: 1179 -
4b
Kabalka GW.Narayana C.Reddy NK. Synth. Commun. 1994, 24: 1019 -
4c
Pereira S.Srebnik M. J. Am. Chem. Soc. 1996, 118: 909 -
4d
Garrett CE.Fu GC.
J. Org. Chem. 1996, 61: 3224 -
5a
Molander GA.Ribagorda M. J. Am. Chem. Soc. 2003, 125: 11148 -
5b
Molander GA.Petrillo DE. J. Am. Chem. Soc. 2006, 128: 9634 -
5c
Molander GA.Ham J. Org. Lett. 2006, 8: 2031 -
5d
Molander GA.Figueroa R. Org. Lett. 2006, 8: 75 -
5e
Molander GA.Ellis NM.
J. Org. Chem. 2006, 71: 7491 -
5f
Molander GA.Copper DJJ. Org. Chem. 2007, 72: 3558 -
5g
Molander GA.Ham J.Canturk B. Org. Lett. 2007, 9: 821 -
5h
Molander GA.Oliveira RA. Tetrahedron Lett. 2008, 49: 1266 - 6
Darses S.Brayer J.-L.Demoute J.-P.Genet J.-P. Tetrahedron Lett. 1997, 38: 4393 - 7
Molander GA.Ellis N. Acc. Chem. Res. 2007, 40: 275 -
8a
Duursma A.Lefort L.Boogers JAF.de Vries AHM.de Vries JG.Minnaard AJ.Feringa BL. Org. Biomol. Chem. 2004, 2: 1682 -
8b
Duursma A.Boiteau J.-G.Lefort L.Boogers JAF.de Vries AHM.de Vries JG.Minnaard AJ.Feringa BL.
J. Org. Chem. 2004, 69: 8045 - 9
Fang G.-H.Yan Z.-J.Deng M.-Z. Org. Lett. 2004, 6: 357 - 10
Tremblay-Morin J.-P.Raeppel S.Gaudette F. Tetrahedron Lett. 2004, 45: 3471 -
11a
Kabalka GW.Mereddy AR. Tetrahedron Lett. 2004, 45: 343 -
11b
Kabalka GW.Mereddy AR. Tetrahedron Lett. 2004, 45: 1417 -
12a
Quach TD.Batey RA. Org. Lett. 2003, 5: 1381 -
12b
Quach TD.Batey RA. Org. Lett. 2003, 5: 4397 - 13
Kim BJ.Matteson DS. Angew. Chem. Int. Ed. 2004, 43: 3056 - 14
Pucheault M.Darses S.Genet J.-P. J. Am. Chem. Soc. 2004, 126: 15356
References
![](https://www.thieme-connect.de/media/synlett/200903/v273_s1.gif)
![](https://www.thieme-connect.de/media/synlett/200903/v273_s2.gif)
![](https://www.thieme-connect.de/media/synlett/200903/v273_s3.gif)
![](https://www.thieme-connect.de/media/synlett/200903/v273_s4.gif)
![](https://www.thieme-connect.de/media/synlett/200903/v273_s5.gif)
![](https://www.thieme-connect.de/media/synlett/200903/v273_s6.gif)
![](https://www.thieme-connect.de/media/synlett/200903/v273_s7.gif)
![](https://www.thieme-connect.de/media/synlett/200903/v273_s8.gif)