Abstract
The aim of the present study was to evaluate the performance of the Finnish diabetes risk score (FINDRISC) for identifying undiagnosed type 2 diabetes in a German population and to develop a more simplified alternative model. We invited 921 individuals with a family history of the metabolic syndrome in a cross-sectional survey. Of these, 771 subjects completed the FINDRISC questionnaire and underwent an oral glucose tolerance test. The performance of the FINDRISC was assessed using the area under the receiver operating characteristics curve (ROC-AUC). The ROC-AUC of the FINDRISC was 0.81 (0.76–0.87). We detected no difference in diabetes prevalence between individuals with or without a family history of diabetes. Two logistic regression models (continuous- and categorical-model) were developed using the diagnosis of diabetes as the dependent variable, and age, body mass index (BMI), waist circumference, use of blood pressure medication, and history of high blood glucose as independent variables. After stepwise backward elimination of the insignificant variables, the following variables remained: age, BMI, and history of high blood glucose. The ROC-AUCs for the continuous- and categorical-models were 0.88 (0.85–0.92) and 0.86 (0.82–0.90), respectively, and were significantly larger than the ROC-AUC of the FINDRISC. There was no significant difference between the ROC-AUC of fasting plasma glucose and those of the two regression models. The FINDRISC questionnaire can be used to identify undetected diabetes in a German population. The simplified version, the categorical-model, may be a useful alternative for identifying asymptomatic type 2 diabetes.
Key words
diabetes risk score - undiagnosed type 2 diabetes - metabolic syndrome
References
1
Zimmet P, Alberti KG, Shaw J.
Global and societal implications of the diabetes epidemic.
Nature.
2001;
414
782-787
2
Schwarz PE, Reimann M, Li J, Bergmann A, Licinio J, Wong ML, Bornstein SR.
The Metabolic Syndrome – a global challenge for prevention.
Horm Metab Res.
2007;
39
777-780
3
Schwarz PE, Bornstein SR, Hanefeld M.
Elevated fasting glucose levels predicts IGT and diabetes also in middle-age subjects.
Diabetes Res Clin Pract.
2007;
77
148-150
4
DECODE Study Group
.
Age- and sex-specific prevalences of diabetes and impaired glucose regulation in 13 European cohorts.
Diabetes Care.
2003;
26
61-69
5
Schwarz PE, Muylle F, Valensi P, Hall M.
The European Perspective of Diabetes Prevention.
Horm Metab Res.
2008;
40
511-514
6
Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM.
Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin.
N Engl J Med.
2002;
346
393-403
7
Tuomilehto J, Lindstrom J, Eriksson JG. et al .
Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance.
New Engl J Med.
2001;
344
1343-1350
8
Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M.
Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial.
Lancet.
2002;
359
2072-2077
9
Torgerson JS, Hauptman J, Boldrin MN, Sjostrom L.
XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the preven-tion of type 2 diabetes in obese patients.
Diabetes Care.
2004;
27
155-161
10
Wenying Y, Lixiang L, Jinwu Q, Zhiqing Y, Haicheng P, Guofeng H.
The preventive effect of Acarbose and Metformin on the progression to diabetes mellitus in the IGT population: a 3-year multicenter prospective study.
Chin J Endocrinol Metab.
2001;
17
131-136
11
Hanefeld M, Ceriello A, Schwarz PE, Bornstein SR.
The metabolic syndrome – a postprandial disease?.
Horm Metab Res.
2006;
38
435-436
12
Schwarz PE, Peltonen M.
Prevention of Type 2 diabetes – lessons we have learnt for implementation.
Horm Metab Res.
2007;
39
636-641
13
Schwarz P.
High risk strategy in diabetes prevention – pro.
Dtsch Med Wochenschr.
2005;
130
1103
14
Schwarz P.
Targeted diabetes prevention in high risk groups: pro.
Dtsch Med Wochenschr.
2005;
130
1103
15
Schwarz PE, Gruhl U, Bornstein SR, Landgraf R, Hall M, Tuomilehto J.
The European perspective on diabetes prevention: development and Implementation of A European Guideline and training standards for diabetes prevention (IMAGE).
Diab Vasc Dis Res.
2007;
4
353-357
16
Scherbaum WA, Dicken HD, Verheyen F, Baehring T.
Detection of a previously unrecognized type 2 diabetes using a risk questionnaire. Efficiency for general population screening.
Dtsch Med Wochenschr.
2006;
131
2208-2212
17
Schwarz PE, Lindstrom J, Kissimova-Scarbeck K, Szybinski Z, Barengo NC, Peltonen M, Tuomilehto J.
The European perspective of type 2 diabetes prevention: diabetes in Europe – prevention using lifestyle, physical activity and nutritional intervention (DE-PLAN) project.
Exp Clin Endocrinol Diabetes.
2008;
116
167-172
18
Schwarz PE, Schwarz J, Bornstein SR, Schulze J.
Diabetes prevention – from physiology to implementation.
Horm Metab Res.
2006;
38
460-464
19
Schwarz PE, Schwarz J, Schuppenies A, Bornstein SR, Schulze J.
Development of a diabetes prevention management program for clinical practice.
Public Health Rep.
2007;
122
258-263
20
Schwarz PE, Schuppenies A, Gruhl U, Hoffmann R, Bornstein SR, Schulze J, Landgraf R.
Prevention of type 2 diabetes in Germany.
Ideas, evidence, implementation. Med Klin (Munich).
2006;
101
730-736
21
Lindstrom J, Tuomilehto J.
The diabetes risk score: a practical tool to predict type 2 diabetes risk.
Diabetes Care.
2003;
26
725-731
22
Saaristo T, Peltonen M, Lindstrom J, Saarikoski L, Sundvall J, Eriksson JG, Tuomilehto J.
Cross-sectional evaluation of the Finnish Diabetes Risk Score: a tool to identify undetected type 2 diabetes, abnormal glucose tolerance and metabolic syndrome.
Diab Vasc Dis Res.
2005;
2
67-72
23
Bergmann A, Li J, Wang L, Schulze J, Bornstein SR, Schwarz PE.
A simplified Finnish diabetes risk score to predict type 2 diabetes risk and disease evolution in a German population.
Horm Metab Res.
2007;
39
677-682
24
Schwarz PE, Towers GW, Fischer S, Govindarajalu S, Schulze J, Bornstein SR, Hanefeld M, Vasseur F.
Hypoadiponectinemia is associated with progression toward type 2 diabetes and genetic variation in the ADIPOQ gene promoter.
Diabetes Care.
2006;
29
1645-1650
25
Li J, Bergmann A, Reimann M, Schulze J, Bornstein SR, Schwarz PE.
Genetic variation of Neurogenin 3 is slightly associated with hyperproinsulinaemia and progression toward type 2 diabetes.
Exp Clin Endocrinol Diabetes.
2008;
116
178-183
26
Third Report of the National Cholesterol Education Program (NCEP)
.
Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report.
Circulation.
2002;
106
3143-3421
27
Schuppenies A, Jacobey H, Bornstein S, Schwarz PEH.
FINDRISK – Development of a questionnaire to estimate the risk of diabetes.
Ernährungs-Umschau.
2006;
53
386
28
Schwarz PE, Li J, Wegner H, Bornstein SR, Lindstrom J, Tuomilehto J.
An accurate risk score based on anthropometric, dietary, and lifestyle factors to predict the development of type 2 diabetes: response to Schulze et al.
Diabetes Care.
2007;
30
e87
, author reply e88
29
Hanley JA, MacNeil BJ.
A method of comparing the areas under receiver operating characteristic curves derived from the same cases.
Radiology.
1983;
148
839-843
30
Franciosi M, De Berardis G, Rossi MC, Sacco M, Belfiglio M, Pellegrini F, Tognoni G, Valentini M, Nicolucci A.
Use of the diabetes risk score for opportunistic screening of undiagnosed diabetes and impaired glucose tolerance: the IGLOO (Impaired Glucose Tolerance and Long-Term Outcomes Observational) study.
Diabetes Care.
2005;
28
1187-1194
31
Laaksonen DE, Lakka HM, Niskanen LK, Kaplan GA, Salonen JT, Lakka TA.
Metabolic syndrome and development of diabetes mellitus: application and validation of recently suggested definitions of the metabolic syndrome in a prospective cohort study.
Am J Epidemiol.
2002;
156
1070-1077
32
Saely CH, Rein P, Drexel H.
The metabolic syndrome and risk of cardiovascular disease and diabetes: experiences with the new diagnostic criteria from the International Diabetes Federation.
Horm Metab Res.
2007;
39
642-650
33
Bell DS.
Hypertension and antihypertensive therapy as risk factors for type 2 diabetes mellitus.
N Engl J Med.
2000;
343
580
34
Gress TW, Nieto FJ, Shahar E, Wofford MR, Brancati FL.
Hypertension and antihypertensive therapy as risk factors for type 2 diabetes mellitus. Atherosclerosis Risk in Communities Study.
N Engl J Med.
2000;
342
905-912
35
Padwal R, Laupacis A.
Antihypertensive therapy and incidence of type 2 diabetes: a systematic review.
Diabetes Care.
2004;
27
247-255
36
Sowers JR, Bakris GL.
Antihypertensive therapy and the risk of type 2 diabetes mellitus.
N Engl J Med.
2000;
342
969-970
37
Stump CS, Hamilton MT, Sowers JR.
Effect of antihypertensive agents on the development of type 2 diabetes mellitus.
Mayo Clin Proc.
2006;
81
796-806
38
Tselmin S, Schwarz PE, Bergmann A, Bornstein S, Bergmann S.
High prevalence of dyslipidemia in the dresden jewish population.
Horm Metab Res.
2007;
39
700-701
39
Reimann M, Schutte AE, Schwarz PE.
Insulin resistance – the role of ethnicity: evidence from Caucasian and African cohorts.
Horm Metab Res.
2007;
39
853-857
40
Silventoinen K, Pankow J, Lindstrom J, Jousilahti P, Hu G, Tuomilehto J.
The validity of the Finnish Diabetes Risk Score for the prediction of the incidence of coronary heart disease and stroke, and total mortality.
Eur J Cardiovasc Prev Rehabil.
2005;
12
451-458
Correspondence
Dr. P. E. H. Schwarz
Department of Medicine
Carl Gustav Carus
Technical University Dresden
Fetscherstraße 74
01307 Dresden
Germany
Telefon: +49/351/458 27 15
Fax: +49/351/458 73 19
eMail: peter.schwarz@uniklinikum-dresden.de