References and Notes
1a
Page P.
Organosulfur
Chemistry
Academic Press;
London:
1995.
1b
Kondo T.
Mitsudo T.
Chem. Rev.
2000,
100:
3205
1c
Arisawa M.
Yamaguchi M.
Pure Appl. Chem.
2008,
80:
993
2a
Renaud P.
Sibi MP.
Radicals in Organic Synthesis
Vol.
2:
Wiley-VCH;
Weinheim:
2001.
Chapter
5.5.3.
2b
Griesbaum K.
Angew.
Chem., Int. Ed. Engl.
1970,
9:
273
2c
Ichinose Y.
Wakamatsu K.
Nozaki K.
Birbaum J.-L.
Oshima K.
Utimoto K.
Chem. Lett.
1987,
16:
1647
2d
Benati L.
Capella L.
Montevecchi PC.
Spagnolo P.
J. Chem. Soc., Perkin Trans.
1
1995,
1035
2e
Chatgilialoglu C.
Ferreri C.
Acc. Chem.
Res.
2005,
38:
441
For recent studies including radical
hydrothiolations of alkynes, see:
3a
Yorimitsu H.
Wakabayashi K.
Shinokubo H.
Oshima K.
Bull. Chem. Soc. Jpn.
2001,
74:
1963
3b
Miyata O.
Nakajima E.
Naito T.
Chem.
Pharm. Bull.
2001,
49:
213
3c
Friestad GK.
Jiang T.
Fioromi GM.
Tetrahedron: Asymmetry
2003,
14:
2853
3d
Beaufils F.
Dénès F.
Renaud P.
Org.
Lett.
2004,
6:
2563
3e
Benati L.
Leardini R.
Minozzi M.
Nanni D.
Scialpi R.
Spagnolo P.
Zanardi G.
Synlett
2004,
987
3f
Beaufils F.
Dénès F.
Becattini B.
Renaud P.
Schenk K.
Adv. Synth. Catal.
2005,
347:
1587
3g
Yasuda H.
Uenoyama Y.
Nobuta O.
Kobayashi S.
Ryu I.
Tetrahedron
Lett.
2008,
49:
367
3h
Bencivenni G.
Lanza T.
Leardini R.
Minozzi M.
Nanni D.
Spagnolo P.
Zanardi G.
Org.
Lett.
2008,
10:
1127
4a
Wadsworth DH.
Detty MR.
J. Org. Chem.
1980,
45:
4611
4b
Benati L.
Montevecchi PC.
Spagnolo P.
J.
Chem. Soc., Perkin Trans. 1
1991,
2103
4c
Montevecchi PC.
Navacchia ML.
Spagnolo P.
Eur. J. Org. Chem.
1998,
1219 ; and references cited therein
4d
Montevecchi PC.
Navacchia ML.
Spagnolo P.
Tetrahedron
1998,
54:
8207
4e
Fernández-Gonzáles M.
Alonso R.
J. Org. Chem.
2006,
71:
6767
For boron-substituted alkynes, see:
5a
Matteson DS.
Peacock K.
J. Org.
Chem.
1963,
28:
369
5b
Lhermitte F.
Carboni B.
Synlett
1996,
377
5c For sulfur-substituted alkynes,
see: Melandri D.
Montevecchi PC.
Navacchia ML.
Tetrahedron
1999,
55:
12227
6a
Zificsak CA.
Mulder JA.
Hsung RP.
Rameshkumar C.
Wei L.-L.
Tetrahedron
2001,
57:
7575
6b
Mulder JA.
Kurtz KCM.
Hsung RP.
Synlett
2003,
1379
7 For the first example of a radical
reaction involving ynamides, see: Marion F.
Courillon C.
Malacria M.
Org. Lett.
2003,
5:
5095
8 Our group has reported the hydrothiolation
of ynamides with dithiophosphinic acid via cationic intermediates: Kanemura S.
Kondoh A.
Yasui H.
Yorimitsu H.
Oshima K.
Bull. Chem. Soc. Jpn.
2008,
81:
506
For examples of the synthesis of
(Z)-1-amino-2-thio-1-alkene derivatives,
see:
9a
Apparao S.
Schmidt RR.
Synthesis
1987,
896
9b
Kondo T.
Baba A.
Nishi Y.
Mitsudo T.
Tetrahedron Lett.
2004,
45:
1469
For hydrothiolations under transition-metal
catalysis, see:
10a
Ogawa A.
Ikeda T.
Kimura K.
Hirao T.
J. Am. Chem. Soc.
1999,
121:
5108
10b
Cao C.
Fraser LR.
Love JA.
J.
Am. Chem. Soc.
2005,
127:
17614
10c
Ananikov VP.
Malyshev DA.
Beletskaya IP.
Aleksandorov GG.
Eremenko IL.
Adv. Synth. Catal.
2005,
347:
1993 ; and references cited therein
11a
Nozaki K.
Oshima K.
Utimoto K.
J. Am. Chem. Soc.
1987,
109:
2547
11b
Nozaki K.
Oshima K.
Utimoto K.
Bull.
Chem. Soc. Jpn.
1987,
60:
3465
12
Zhang Y.
Hsung RP.
Tracey MR.
Kurtz KCM.
Vera EL.
Org. Lett.
2004,
6:
1151
13
Typical Experimental
Procedure for Radical Hydrothiolation of Ynamides: Under air,
Et3B (1.0 M hexane solution, 0.050 mL, 0.050 mmol) was
added to a solution of N-benzyl-N-(1-octynyl)-p-toluenesulfonamide (1a, 0.18 g, 0.50 mmol) and benzenethiol
(2a, 0.062 mL, 0.60 mmol) in CH2Cl2 (2.0
mL) at -30 ˚C. The solution was stirred for 30
min at the same temperature and concentrated in vacuo. ¹H
NMR analysis of the crude mixture showed a 94% yield of
the adduct (Z/E >99:1).
Silica gel column chromatography (hexane-EtOAc = 10:1 → 5:1)
afforded
N-benzyl-N-[(Z)-2-phenylthio-1-octenyl]-p-toluenesulfon-amide (3aa)
as a white solid in 89% yield (0.21 g, 0.45 mmol).
3aa: IR (Nujol): 2925, 1456, 1351, 1339,
1161, 1089, 1024, 741, 661 cm-¹. ¹H
NMR (CDCl3): δ = 0.83 (t, J = 7.5 Hz, 3 H), 1.02-1.15
(m, 4 H), 1.16-1.35 (m, 4 H), 1.89 (t, J = 7.0 Hz,
2 H), 2.45 (s, 3 H), 4.46 (s, 2 H), 5.64 (s, 1 H), 6.90-6.94 (m,
2 H), 7.13-7.21 (m, 3 H), 7.26-7.35 (m, 5 H),
7.36-7.41 (m, 2 H), 7.76-7.80 (m, 2 H). ¹³C
NMR (CDCl3): δ = 14.04, 21.57, 22.50,
28.09, 28.25, 31.40, 33.36, 54.15, 124.26, 127.14, 127.62, 127.67,
128.32, 128.58, 128.77, 129.60, 132.31, 133.10, 135.63, 135.83,
142.86, 143.59. Anal. Calcd for C28H33NO2S2:
C, 70.11; H, 6.93. Found: C, 70.00; H, 6.94.
14 It was reported that arylthiyl radicals
behave as electron-deficient radicals: Ito O.
Fleming MDCM.
J.
Chem. Soc., Perkin Trans. 2
1989,
689
15 The diastereoselectivity can be explained
by steric effect. In reference 4b, Montevecci and Spagnolo insisted
that primary alkyl groups are bulkier than a phenylthio group. We
thus assume that vinyl radical 5 would
exist almost as a Z-form to prevent the
steric repulsion between the bulky amide moiety and the alkyl group.
The Z-form abstracts hydrogen from benzenethiol
selectively. On the other hand, Montevecci et al. also insisted
that a methyl group is smaller than a phenyl-thio group. Indeed,
the reaction of N-methyl-N-(1-propenyl)-p-toluenesulfonamide
with benzenethiol resulted in favorable formation of the corresponding Z-adduct (E/Z = 2:3).
16 The addition reaction of phenyl-substituted
ynamide PhC≡CNTs(Bn) led to a mixture of stereo- and regioisomers.
17 Alkenes and ketones can be reduced
under these conditions. See: Kursaniov DN.
Parnes ZN.
Bassova GL.
Loim NM.
Zdanovich VI.
Tetrahedron
1967,
23:
2235
18
Typical Experimental
Procedure for Hydrogenations of the Double Bonds of Enamides:
Under an argon atmosphere, Et3SiH (0.048 mL, 0.30 mmol)
was added to a solution of 3aa (0.096 g,
0.20 mmol) in TFA (1.0 mL, 13.5 mmol) at 0 ˚C. The solution
was stirred for 11 h at the same temperature. Then the reaction
was quenched with a sat. NaHCO3 solution and extracted
with EtOAc (2 × 10 mL). The organic extracts were dried
over Na2SO4 and concentrated in vacuo. Silica
gel column chromatography (hexane-EtOAc, 20:1) afforded N-benzyl-N-[2-(phenylthio)-
octyl]-p-toluenesulfonamide (6aa)
as a colorless oil in 87% yield (0.084 g, 0.17 mmol).
6aa: IR (neat): 2926, 2855, 1599, 1456,
1439, 1342, 1162, 1092, 737, 654 cm-¹. ¹H
NMR (CDCl3): δ = 0.88 (t, J = 7.5 Hz, 3 H), 1.02-1.31
(m, 8 H), 1.34-1.46 (m, 1 H), 1.65-1.75 (m, 1
H), 2.42 (s, 3 H), 2.95-3.05 (m, 2 H), 3.26-3.34
(m, 1 H), 4.05 (d, J = 14.5
Hz, 1 H), 4.31 (d, J = 14.5
Hz, 1 H), 7.17-7.32 (m, 12 H), 7.57-7.61 (m, 2
H). ¹³C NMR (CDCl3): δ = 14.07,
21.49, 22.58, 26.62, 28.94, 30.82, 31.64, 47.40, 53.96, 54.26, 126.75,
127.30, 127.96, 128.58, 128.62, 128.83, 129.69, 131.62, 134.66,
135.82, 136.21, 143.37. Anal. Calcd for C28H35NO2S2:
C, 69.81; H, 7.32. Found: C, 70.03; H, 7.38.
19
Markgren P.-O.
Schaal W.
Hämäläinen M.
Karlén A.
Hallberg A.
Samuelsson B.
Danielson UH.
J. Med. Chem.
2002,
45:
5430
Chiral vic-aminothio
compounds serve as ligands in enantioselective reactions. See:
20a
Vargas F.
Sehnem
JA.
Galetto FZ.
Braga AL.
Tetrahedron
2008,
64:
392 ; and references cited therein
20b
Jin M.-J.
Sarkar SM.
Lee D.-H.
Qiu H.
Org. Lett.
2008,
10:
1235 ; and references cited therein