Subscribe to RSS
DOI: 10.1055/s-0028-1087416
Regiodivergent Approach to α- and β-(Arylthio)alkenylphosphane Oxides and Sulfides: Aminophosphanes as Synthetic Auxiliaries
Publication History
Publication Date:
27 November 2008 (online)
Abstract
β-(Arylthio)ethenylphosphane oxides and sulfides are easily prepared by nucleophilic addition of thiophenols to the CºC bond of the respective P,P-diphenyl-P-phenylethynyl P(V) derivatives. The regioisomeric α-(arylthio) analogues can be also prepared, starting from the same activated alkynes, by sequential nucleophilic addition of aminophosphanes and thiophenols. In these latter cases, aminophosphanes, which are recovered at the end of the processes, act just as synthetic auxiliaries for modulating the regiochemical outcome of the global thiophenol addition.
Key words
alkynes - aminophosphanes - nucleophilic additions - phosphorus - regioselectivity
-
1a
Portnoy NA.Morrow CJ.Chattha MS.Williams JC.Aguiar AM. Tetrahedron Lett. 1971, 12: 1397 -
1b
Maumy M. Bull. Soc. Chim. Fr. 1972, 1600 -
1c
Märkl G.Merkl B. Tetrahedron Lett. 1983, 24: 5865 -
1d
Kawashima T.Miki Y.Inamoto N. Chem. Lett. 1986, 1883 -
1e
Lecerclé D.Sawacki M.Taran F. Org. Lett. 2006, 8: 4283 -
1f
Huang X.Xu L. Synthesis 2006, 231 -
1g
Kondoh A.Yorimitsu H.Oshima K. Org. Lett. 2008, 10: 3093 -
2a
Alajarín M.López-Leonardo C.Llamas-Lorente P. Top. Curr. Chem. 2005, 250: 77 -
2b
Alajarín M.López-Leonardo C.Berná J. In Science of Synthesis Vol. 31:Ramsden CA. Thieme; Stuttgart: 2007. p.1873 - 3
Alajarín M.López-Leonardo C.Llamas-Lorente P. Synlett 2003, 801 - 4
Alajarín M.López-Leonardo C.Llamas-Lorente P. Lett. Org. Chem. 2004, 1: 145 - 5
Alajarín M.López-Leonardo C.Llamas-Lorente P.Raja R. Tetrahedron Lett. 2007, 48: 6987 - 6
Alajarín M.López-Leonardo C.Llamas-Lorente P.Bautista D.Jones PG. Dalton Trans. 2003, 426 -
7a
Katritzky AR.Lan X.Yang JZ.Denisko OV. Chem. Rev. 1998, 98: 409 -
7b
Katritzky AR.Rogovoy BV. Chem. Eur. J. 2003, 9: 4586 - 8
Liu B.Wang K.Petersen JL. J. Org. Chem. 1996, 61: 8503 - 9
Issleib K.Harzfeld G. Chem. Ber. 1962, 95: 268 - 11
Dickstein JI.Millar SI. In The Chemistry of the Carbon-Carbon Triple Bond Part 2:Patai S. Wiley; Chichester: 1978. p.813 -
13a
Duncan M.Gallager M. Org. Magn. Reson. 1981, 15: 37 -
13b
Sato A.Yorimitsu H.Oshima K. Angew. Chem. Int. Ed. 2005, 44: 1694 - 14
Banert K.Fendel W.Schlott J. Angew. Chem. Int. Ed. 1998, 37: 3289 -
15a
Colquhoun IJ.McFarlane W. J. Chem. Soc., Dalton Trans. 1982, 1915 -
15b
Schmidbaur H.Paschalidis C.Steidelmann O.Wilkinson DL.Müller G. Chem. Ber. 1989, 1857 -
15c
Barnet K.Fendel W.Schlott J. Angew. Chem. Int. Ed. 1998, 37: 3289 -
15d
Tsuchii K.Nomoto A.Ogawa A. Tetrahedron Lett. 2006, 47: 3919 - 17
Brown DH.Cross RJ.Keat R. J. Chem. Soc., Dalton Trans. 1980, 871 - 18
Warren S.Zaslona AT. Tetrahedron. Lett. 1982, 23: 4167 - 19
Grayson JI.Warren S.Zaslona AT. J. Chem. Soc., Perkin Trans. 1 1987, 967
References and Notes
Representative
Experimental Procedure and Spectral Data for Compounds 3
A
solution of P,P-diphenyl-P-phenylethynylphosphane oxide (1, 0.3 g, 1 mmol), 4-methoxythiophenol
(0.21 g, 1.5 mmol), and KHMDS (0.5 M soln in toluene, 0.4 mL, 0.2 mmol)
in toluene (20 mL) was refluxed for 12 h under a nitrogen atmosphere.
Then the solvent was removed under reduced pressure, and the residue
was purified by chromatography on deactivated silica gel (5% Et3N
in hexane) with EtOAc-hexane 1:1 (v/v) and then
EtOAc to yield a mixture of Z- and E-isomers; R
f
= 0.5 (EtOAc). The subsequent
fractional crystallization allowed the separation of the two isomers.
(
Z
)-
P
,
P
-Diphenyl-
P
-[2-phenyl-2-(4-methoxyphenyl-thio)]ethenylphosphane
Oxide (
Z
-3b)
White
needles (from CH2Cl2-Et2O),
mp 196-197 ˚C. IR (Nujol): 1589, 1544, 1491, 1439,
1246, 1181, 1119, 739, 719, 698 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 3.63
(s, 3 H, OCH3), 6.51 (d, 2 H, ³
J
HH = 8.9
Hz, HAr), 6.53 (d, 1 H, ²
J
HP = 20.0
Hz, CHP), 6.88 (d, 2 H, ³
J
HH = 8.9
Hz, HAr), 7.16-7.19 (m, 3 H, Ph), 7.38-7.45
(m, 2 H, Ph), 7.46-7.51 (m, 6 H, Ph2), 7.87-7.94
(m, 4 H, Ph2). ¹³C NMR (75
MHz, CDCl3): δ = 55.08
(OCH3), 114.08, 122.41 (d, ¹
J
CP = 104.5 Hz,
PCH=C), 123.18 (quaternary),
128.04, 128.48, 128.50 (d, ³
J
CP = 12.2
Hz, C
m
), 129.26, 131.19 (d, ²
J
CP = 9.8
Hz, C
o
), 131.50 (d, 4
J
CP = 2.8
Hz, C
p
), 134.35 (d, ¹
J
CP = 106.7 Hz,
C
i
), 134.4, 139.03 (d, ³
J
CP = 14.4
Hz, quaternary), 159.20 (d, ²
J
CP = 1.0
Hz, PCH=C), 161.28 (quaternary). ³¹P NMR
(121 MHz, CDCl3): d = 19.90.
MS (EI): m/z = 443 (10) [M + 1]+,
442 (10) [M]+, 201 (100).
Anal. Calcd for C27H23O2PS (442.51):
C, 73.28; H, 5.24. Found: C, 73.41; H, 5.10.
(
E
)-
P
,
P
-Diphenyl-
P
-[2-phenyl-2-(4-methoxyphenyl-thio)]ethenylphosphane
Oxide (
E
-3b)
White
needles (from CH2Cl2), mp 119-120 ˚C.
IR (Nujol): 1588, 1554 1492, 1439, 1247, 1176, 1167, 1116, 703,
691 cm-¹. ¹H NMR
(300 MHz, CDCl3): δ = 3.82
(s, 3 H, OCH3), 5.78 (d, 1 H, ²
J
HP = 15.2
Hz, CHP), 6.95 (d, 2 H, ³
J
HH = 9.0 Hz,
HAr), 6.99-7.11 (m, 3 H), 7.17-7.30
(m, 7 H), 7.37-7.50 (m, 5 H), 7.55 (d, 2 H, ³
J
HH = 9.0
Hz, HAr). ¹³C NMR (75 MHz,
CDCl3): δ = 55.53
(OCH3), 113.50 (d, ¹
J
CP = 104.6 Hz,
PCH=C), 115.51, 121.23 (quaternary),
128.10 (d, ³
J
CP = 12.1
Hz, C
m
), 128.22, 129.23 (d, 4
J
CP = 1.2
Hz,), 129.39, 130.81 (d, ²
J
CP = 9.5
Hz, C
o
), 130.88 (d, 4
J
CP = 2.7 Hz,
C
p
), 133.69 (d, ¹
J
CP = 106.6
Hz, C
i
), 136.86 (d, ³
J
CP = 6.5 Hz,
quaternary), 137.41, 161.12 (quaternary), 164.79 (d, ²
J
CP = 4.7
Hz, PCH=C). ³¹P
NMR (121 MHz, CDCl3): d = 17.90.
MS (EI): m/z = 443
(11) [M + 1]+, 442
(28) [M]+, 201 (100). Anal.
Calcd for C27H23O2PS (442.51):
C, 73.28; H, 5.24. Found: C, 73.39; H, 5.38.
Representative
Experimental Procedure and Spectral Data for Compounds 6
A
solution of P,P-diphenyl-P-phenylethynylphosphane oxide (1, 0.3 g, 1 mmol), P,P-diphenyl-P-(4-tolylamino)-phosphane
(0.44 g, 1.5 mmol), and KHMDS (0.5 M soln in toluene, 0.4 mL, 0.2
mmol) in anhyd toluene (20 mL) was refluxed for 24 h under a nitrogen
atmosphere. Then, the solvent was removed under reduced pressure,
and the residue was purified by chromatography on deactivated silica
gel (5% Et3N in hexane) with EtOAc-hexane
1:1 (v/v) and then EtOAc to yield 6a as
orange prisms (from CH2Cl2-Et2O),
mp 153-155 ˚C. IR (Nujol): 1505, 1439, 1331, 1181, 1119,
722, 706, 695 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 2.29
(s, 3 H, CH3), 6.82-6.86 (m, 6 H, HAr and
Ph), 6.93-6.99 (m, 3 H, HAr and Ph), 7.17-7.26
(m, 4 H, Ph2), 7.29-7.45 (m, 12 H, Ph2),
7.63 (t, 1 H, ²
J
HP = ³
J
HP = 21.2
Hz, CH), 7.64-7.69 (m, 4 H, Ph2). ¹³C
NMR (100 MHz, CDCl3): δ = 20.74
(CH3), 124.06 (d, ³
J
CP = 18.5
Hz, C2-Ar), 127.35, 128.06 (d, 5
J
CP = 1.2
Hz, C4-Ph), 128.26 (d, ³
J
CP = 12.1
Hz, C
m
), 128.47 (d, ³
J
CP = 12.1
Hz, C
m
), 128.87 (d, ¹
J
CP = 102.5 Hz,
C
i
), 129.55, 129.60, 130.77
(d, ²
J
CP = 9.7
Hz, C
o
), 131.30 (d, 4
J
CP = 2.7
Hz, C
p
), 131.92 (d, 4
J
CP = 2.4
Hz, C
p
), 132.80 (d, ²
J
CP = 9.2
Hz, C
o
), 133.12 (d, ¹
J
CP = 105.4
Hz, C
i
), 134.00 (t, ²
J
CP = ³
J
CP = 8.9
Hz, quaternary, C1-Ph), 137.90 [dd, ¹
J
CP = 87.6
Hz, ²
J
CP = 5.4
Hz, PCH = CP],
147.97 (d, ²
J
CP = 2.0
Hz, quaternary, C1-Ar), 152.62 [d, ¹
J
CP = 65.6
Hz, PCH=CP], C4-Ar
not observed. ³¹P NMR (121 MHz, CDCl3): δ = 4.39
(d, ³
J
PP = 45.4
Hz, P=N), 18.03 (d, ³
J
PP = 45.4
Hz, P=O). MS (EI): m/z = 594
(13) [M + 1]+, 593 (28) [M]+,
291 (100). Anal. Calcd for C39H33NOP2 (593.20): C,
78.91; H, 5.60; N, 2.36. Found: C, 79.04; H, 5.46; N, 2.26.
Representative
Experimental Procedure and Spectral Data for Compounds 8
A
solution of 6a (0.78 g, 1.32 mmol) and
4-methoxythio-phenol (0.21 g, 1.5 mmol) in anhyd toluene (20 mL)
was refluxed for 12 h under a nitrogen atmosphere. Then, the solvent
was removed under reduced pressure, and the residue was purified
by chromatography on deactivated silica gel (5% Et3N
in hexane) with EtOAc-hexane 1:1 (v/v) and then
EtOAc.
(
Z
)-
P
,
P
-Diphenyl-
P
-[2-phenyl-1-(4-methylphenyl-thio)]ethenylphosphane
Oxide (
Z
-8b)
R
f
= 0.7
(EtOAc); white prisms (from CH2Cl2-Et2O),
mp 126-127 ˚C. IR (Nujol): 1589, 1493, 1434, 1298,
1246, 1201, 723, 694 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 3.66 (s,
3 H, OCH3), 6.45 (d, 2 H, ³
J
HH = 8.9
Hz, HAr), 6.72 (d, 2 H, ³
J
HH = 8.9
Hz, HAr), 7.31-7.38 (m, 7 H, Ph2 and
Ph), 7.44-7.47 (m, 2 H, Ph), 7.78-7.81 (m, 4 H,
Ph2), 7.88-7.90 (m, 2 H, Ph), 8.27 (d, 1 H, ³
J
HP = 17.3
Hz, CHP). ¹³C NMR (100 MHz, CDCl3): δ = 55.26
(OCH3), 114.34, 124.63 (d, ³
J
CP = 1.5
Hz, quaternary, C1-Ar), 125.37 (d, ¹
J
CP = 97.1
Hz, PC=CH), 128.22 (d, ³
J
CP = 2.1
Hz, C
m
), 128.38, 129.72, 130.25,
130.42 (d
right
, C
i
), 130.77, 131.87 (d, 4
J
CP = 2.8
Hz, C
p
), 132.38 (d, ²
J
CP = 9.7
Hz, C
o
), 134.58 (d, ³
J
CP = 15.7
Hz, quaternary, C1-Ph), 152.14 (d, ²
J
CP = 13.7
Hz, PC=CH), 158.25 (quaternary). ³¹P
NMR (162 MHz, CDCl3): d = 28.30.
MS (EI): m/z = 443
(23) [M + 1]+, 442
(66) [M]+, 303 (100). Anal.
Calcd for C27H23O2PS (442.51):
C, 73.28; H, 5.24. Found: C, 73.15; H, 5.32.
(
E
)-
P
,
P
-Diphenyl-
P
-[2-phenyl-2-(4-methoxyphenyl-thio)]ethenylphosphane
Oxide (
E
-8b)
R
f
= 0.55
(EtOAc); colourless oil. IR (Nujol): 1593, 1491, 1291, 1246, 1176,
1115, 722, 694 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 3.79
(s, 3 H, OCH3), 6.83 (d, 2 H, ³
J
HH = 8.8
Hz, HAr), 7.01-7.03 (m, 3 H), 7.24 (d, 1 H, ³
J
HP = 48.2
Hz, CHP), 7.29-7.33 (m, 6 H, Ph2), 7.37-7.42
(m, 4 H, Ph), 7.72-7.77 (m, 4 H, Ph2). ¹³C
NMR (75 MHz, CDCl3): δ = 55.42 (OCH3),
115.19, 124.11 (d, ³
J
CP = 5.0
Hz, quaternary, C1-Ar), 127.67, 128.07 (d, ³
J
CP = 12.2
Hz, C
m
), 128.28, 129.73, 131.66
(d, 4
J
CP = 3.0
Hz, C
p
), 131.92 (d, ²
J
CP = 9.3
Hz, C
o
), 131.97 (d, ¹
J
CP = 89.8
Hz, PC=CH), 132.23 (d, ¹
J
CP = 106.2 Hz,
C
i
), 135.12, 135.52 (d, ³
J
CP = 5.0
Hz, quaternary, C1-Ph), 146.26 (d, ²
J
CP = 7.4
Hz, PC=CH), 160.13 (quaternary). ³¹P NMR
(121 MHz, CDCl3): δ = 25.39.
MS (EI): m/z = 442 (10) [M]+,
105 (100). Anal. Calcd for C27H23O2PS
(442.51): C, 73.28; H, 5.24. Found: C, 73.16; H, 5.32.