Subscribe to RSS
DOI: 10.1055/s-0028-1087534
A Simple and Efficient Procedure for the Synthesis of Ketone Di-sec-alkyl Acetals
Publication History
Publication Date:
21 January 2009 (online)
Abstract
Ketone di-sec-alkyl acetals are obtained in good to excellent yields by treatment of ketones with tri-sec-alkyl orthoformate and the corresponding alcohol in the presence of a catalytic amount of cerium(III) trifluoromethanesulfonate.
Key words
acetals - cerium(III) trifluoromethanesulfonate - ketones - Lewis acids - tri-sec-alkyl orthoformates
-
1a
Kocienski PJ. Protecting Groups 3rd ed.: Thieme; New York: 2004. Chap. 2. -
1b
Wuts PGM.Greene TW. Greene’s Protective Groups in Organic Synthesis 4th ed.: Wiley; New York: 2007. Chap. 4. -
2a
Mukaiyama T.Murakami M. Synthesis 1987, 1043 -
2b
Alexakis A.Mangeney P. Tetrahedron: Asymmetry 1990, 1: 477 -
3a
Meskens FAJ. Synthesis 1981, 501 -
3b
Sandler SR.Karo W. Organic Functional Group Preparations 2nd ed., Vol. III: Academic; New York: 1989. Chap. 1. -
3c
Macpherson DT.Harshad KR. In Comprehensive Organic Functional Group Transformations Vol. 4:Kirby GW. Pergamon; Oxford: 1995. p.159 - 4
Howard WL.Lorette NB. J. Org. Chem. 1960, 25: 525 - 5
Roelofsen DP.van Bekkum H. Synthesis 1972, 419 - 6 α-Hydroxy ketone di-sec-alkyl acetals were obtained by addition
of secondary alcohols to sec-alkyl epoxy
ethers:
Stevens CL.McLean RL.Weinheimer AJ. J. Am. Chem. Soc. 1958, 80: 2276 - For the use of Ce(OTf)3 in other types of reactions, see:
-
7a
Dalpozzo R.De Nino A.Maiuolo L.Procopio A.Tagarelli A.Sindona G.Bartoli G. J. Org. Chem. 2002, 67: 9093 -
7b
Keh CCK.Namboodiri VV.Varma RS.Li C.-J. Tetrahedron Lett. 2002, 43: 4993 -
7c
Dalpozzo R.De Nino A.Maiuolo L.Procopio A.Nardi M.Bartoli G.Romeo R. Tetrahedron Lett. 2003, 44: 5621 -
7d
Bartoli G.Dalpozzo R.De Nino A.Maiuolo L.Nardi M.Procopio A.Tagarelli A. Eur. J. Org. Chem. 2004, 2176 -
7e
Bartoli G.Dalpozzo R.De Nino A.Maiuolo L.Nardi M.Procopio A.Tagarelli A. Green Chem. 2004, 6: 191 -
7f
Bartoli G.De Nino A.Dalpozzo R.Maiuolo L.Nardi M.Procopio A.Tagarelli A. Lett. Org. Chem. 2005, 2: 51 - 8 MacKenzie et al. reported the reaction
of acetone, tri-sec-butyl orthformate, S-BuOH, and PTSA did not occur and the orthoester
was recovered unchanged:
MacKenzie CA.Stocker JH. J. Org. Chem. 1955, 20: 1695
References and Notes
When this reaction was attempted in the absence of i-PrOH or triisopropyl orthformate, diisopropyl acetalization did not proceed at all.
10None (85%), CH2Cl2 (80%), Et2O (83%), THF (81%), MeCN (76%).
11
Typical Procedure
(Table 1, Entry 1)
To a mixture of cyclopentanone
(84 mg, 1.0 mmol), Ce(OTf)3 (Alfa Aesar, 5.9 mg, 0.01
mmol), i-PrOH (1 mL), and toluene (1
mL) triisopropyl orthoformate (247 mg, 1.3 mmol)was added at 0 ˚C.
After the mixture was kept stirring at the same temperature for
6 h, it was quenched by adding Et3N (101 mg, 1.0 mmol).
The resulting mixture was passed through a short plug of neutral
Al2O3 (activity III), which was then washed
with Et2O (30 mL), and the solvent was removed under
reduced pressure. The ¹H NMR (500 MHz) analysis
of the crude product showed the absence of
1-cyclopentenyl
isopropyl ether. The residue was chroma-tographed on neutral Al2O3 (activity
III, hexane) to afford cyclopentanone diisopropyl acetal (168 mg,
90%). ¹H NMR (500 MHz, CDCl3): δ = 1.17
(d, J = 6.1
Hz, 12 H), 1.65-1.70 (m, 4 H), 1.75-1.81 (m, 4
H), 4.01-4.09 (m, 2 H). ¹³C
NMR (125 MHz, CDCl3): δ = 21.7, 24.4,
35.6, 63.8, 111.6.
2-Octanone
Diisopropyl Acetal
¹H NMR (500
MHz, CDCl3): δ = 0.88 (t, J = 7.1 Hz,
3 H), 1.14 (d, J = 6.4
Hz, 12 H), 1.24-1.37 (m, 8 H), 1.27 (s, 3 H), 1.54-1.59
(m, 2 H), 3.99-4.08 (m 2 H). ¹³C
NMR (125 MHz, CDCl3): δ = 14.1, 22.6,
23.7, 24.5, 24.6, 24.8, 29.7, 31.9, 39.8, 62.1, 102.6.
1-Cyclohexyl-1-ethanone Diisopropyl Acetal
¹H
NMR (500 MHz, C6D6): δ = 0.92-2.10
(m, 11 H), 1.10 (d, J = 6.0
Hz, 6 H), 1.13 (d, J = 6.0
Hz, 6 H), 1.15 (s, 3 H), 3.97-4.05 (m, 2 H). ¹³C
NMR (125 MHz, C6D6): δ = 19.7, 24.6,
25.0, 27.1, 27.2, 29.0, 45.9, 62.0, 104.5.
Acetophenone
Diisopropyl Acetal
¹H NMR (500
MHz, C6D6): δ = 0.98 (d, J = 6.5 Hz,
6 H), 1.12 (d, J = 6.0
Hz, 6 H), 1.61 (s, 3 H), 3.96-4.04 (m, 2 H), 7.08-7.76
(m, 5 H). ¹³C NMR (125 MHz, C6D6): δ = 24.2, 24.9,
28.3, 63.7, 101.3, 127.3, 127.6, 145.0.
Cyclohexanone
Di-
sec
-butyl
Acetal
¹H NMR (500 MHz, C6D6): δ = 0.87
(t, J = 7.7
Hz, 3 H), 0.88 (t, J = 7.7
Hz, 3 H), 1.14 (d, J = 6.4
Hz, 3 H), 1.16 (d, J = 6.1 Hz,
3 H), 1.26-1.35 (m, 2 H), 1.43-1.74 (m, 12 H),
3.82-3.93 (m, 2 H). ¹³C NMR
(125 MHz, C6D6): δ = 9.5,
9.6, 21.3, 21.5, 23.8, 26.1, 31.3, 36.1, 36.2, 36.5, 66.8, 67.0,
101.3.
Cyclohexanone Dicyclohexyl Acetal
¹H
NMR (500 MHz, C6D6): δ = 1.10-1.87
(m, 30 H), 3.82-3.89 (m, 2 H). ¹³C
NMR (125 MHz, C6D6): δ = 23.8,
24.8, 26.2, 35.2, 36.7, 67.9, 101.5.
Other Brønsted and Lewis acids are less effective than Ce(OTf)3 in our reaction system. The reaction of 2-octanone under identical conditions are as follows: TfOH (23%), BF3˙OEt2 (0%), AlCl3 (15%), Mg(OTf)2 (0%), TMSOTf (58%), Sc(OTf)3 (62%), Cu(OTf)2 (63%), Zn(OTf)2 (35%), La(OTf)3 (36%), Gd(OTf)3 (63%), Bi(OTf)3˙4H2O (51%).
13Reaction of benzophenone (r.t., 24 h) followed by the standard workup gave benzophenone diisopropyl acetal (5%) and the starting ketone (90%).
14Di-sec-butyl acetalization of cyclohexanone by the Roelofsen method [5] afforded cyclohexanone di-sec-butyl acetal (80%) and sec-butyl 1-cyclohexenyl ether (15%).