Synlett 2009(3): 407-410  
DOI: 10.1055/s-0028-1087538
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

One-Pot Synthesis of Ureido Peptides and Urea-Tethered Glycosylated Amino Acids Employing Deoxo-Fluor and TMSN3

H. P. Hemantha, G. Chennakrishnareddy, T. M. Vishwanatha, V. V. Sureshbabu*
Peptide Research Laboratory, Department of Studies in Chemistry, Central College Campus, Dr. B. R. Ambedkar Veedhi, Bangalore University, Bangalore 560001, India
Fax: +91(80)22292848; e-Mail: hariccb@rediffmail.com;
Further Information

Publication History

Received 10 November 2008
Publication Date:
21 January 2009 (online)

Abstract

A facile one-pot procedure for the synthesis of urea-linked peptidomimetics and neoglycopeptides under Curtius rearrangement conditions employing Deoxo-Fluor and TMSN3 is described. The method is efficient and circumvents the isolation of acyl azide and isocyanate intermediates. The rearrangement of the in situ generated acyl azide via the acyl fluoride was carried out under ultrasonication followed by amine capture to insert a urea bond. The protocol worked well with all the common N-urethane-protected amino acids and also with a sugar-6-acid.

    References and Notes

  • 1 Liskamp RMJ. Angew. Chem., Int. Ed. Engl.  1994,  33:  633 
  • 2 Gellman SH. Acc. Chem. Res.  1998,  31:  173 
  • 3 Burgess K. Linthicum DS. Shin H. Angew. Chem., Int. Ed. Engl.  1995,  34:  907 
  • 4 Nowick JS. Abdi M. Bellamo KA. Love JA. Martinez EJ. Noronha G. Smith EM. Ziller JM. J. Am. Chem. Soc.  1995,  117:  89 
  • 5 Nowick JS. Acc. Chem. Res.  1999,  32:  287 
  • 6 Fischer L. Semetey V. Lozano JM. Schaffiner AP. Briand JP. Didierjean C. Guichard G. Eur. J. Org. Chem.  2007,  3944 
  • 7 Patil BS. Vasanthakumar GR. Sureshbabu VV. J. Org. Chem.  2003,  68:  7274 
  • 8 Boeijen A. Liskamp RMJ. Eur. J. Org. Chem.  1999,  2127 
  • 9 Tamilarasu N. Huq F. Rana TM. J. Am. Chem. Soc.  1999,  121:  1579 
  • 10 Bakshi P. Wolfe MS. J. Med. Chem.  2004,  47:  6485 
  • 11 Nowick JS. Holmer DL. Noronha G. Smith EM. Nguyen JM. Huang SL. J. Org. Chem.  1996,  61:  3929 
  • 12 Boeijen A. Ameijde Jv. Liskamp RMJ. J. Org. Chem.  2001,  6:  8454 
  • 13 Guichard G. Semetey V. Didierjean C. Aubry A. Briand JP. Rodriguez M. J. Org. Chem.  1999,  64:  8702 
  • 14 Myers AC. Kowalski JA. Lipton MA. Bioorg. Med. Chem. Lett.  2004,  14:  5219 
  • 15 Sureshbabu VV. Patil BS. Venkataramanarao R.
    J. Org. Chem.  2006,  71:  7697 
  • 16 Sureshbabu VV. Venkataramanarao R. Hemantha HP. Int. J. Pept. Res. Ther.  2008,  14:  34 
  • 17 Sureshbabu VV. . Tantry SJ. Int. J. Pept. Res. Ther.  2005,  11:  131 
  • 18 Sureshbabu VV. Chennakrishnareddy G. Narendra N. Tetrahedron Lett.  2008,  49:  1408 
  • 19 Baumann M. Baxendale IR. Ley SV. Nikbin N. Smith CD. Tierney JP. Org. Biomol. Chem.  2008,  6:  1577 
  • 20a Lal GS. Pez GP. Pesaresi RJ. Prozonic FM. Chem. Commun.  1999,  215 
  • 20b Lal GS. Pez GP. Pesaresi RJ. Prozonic FM. Cheng H. J. Org. Chem.  1999,  64:  7048 
  • 21 Singh RP. Shreeve JM. Synthesis  2002,  2561 
  • 22 Singh RP. Chakraborty D. Shreeve JM. J. Fluorine Chem.  2002,  111:  153 
  • 23 Kangani CO. Day BW. Kelley DE. Tetrahedron Lett.  2008,  49:  914 
  • 24a Kangani CO. Day BW. Kelley DE. Tetrahedron Lett.  2007,  48:  5933 
  • 24b Kangani CO. Kelley DE. Tetrahedron Lett.  2005,  46:  8917 
  • 25 Tunoori AR. White JM. Georg GI. Org Lett.  2000,  2:  4091 
  • 26 Carpino LA. Mansour EME. El-Fahan A. J. Org. Chem.  1993,  58:  4162 
  • 27 Kaduk C. Wenschuh H. Beyermann M. Forner K. Carpino LA. Bienert M. Lett. Pept. Sci.  1995,  2:  285 
  • Utility of commercial activated zinc dust to deprotonate amine hydrochloride salts is documented. Sureshbabu et al. demonstrated the conversion of amino acid/peptide acid ester hydrochloride salts into the corresponding free amines, see:
  • 28a Sureshbabu VV. Ananda K. J. Pept. Res.  2001,  57:  223 
  • 28b For the use of zinc dust as HCl scavenger in peptide synthesis via N-Fmoc amino acid chlorides under non-Schotten-Baumann conditions, see: Gopi HN. Sureshbabu VV. Tetrahedron Lett.  1998,  39:  9769 
  • 28c For a similar application in N-Boc-Z-Fmoc amino acid fluoride couplings under neutral conditions, see: Sureshbabu VV. Ananda K. Lett. Pept. Sci.  2000,  7:  41 
  • 28d For the preparation of oligomer-free Z-amino acids employing ZCl/Zn dust, see: Gopi HN. Ananda K. Sureshbabu VV. Protein Pept. Lett.  1999,  6:  233 
  • 31 First, a solution of α-d-galactose (5 mmol) and ZnBr2 (5.2 mmol) in acetone (20 mL) was stirred for 12 h and filtered. The filtrate was concentrated and after a simple workup, the resulting (1,2),(3,4)-diacetylgalactopyranose was dissolved in MeCN. Then, TEMPO and Na3PO4 buffer were added and the reaction mixture was warmed to 35 ˚C. Sodium chlorite and bleach were added, and the reaction mixture was stirred till completion of reaction. A simple workup lead to the isolation of the desired sugar-6-acid. See: Jhao M. Li J. Mano E. Song Z. Tschaen DM. Grabowski EJJ. Reider PJ. J. Org. Chem.  1999,  64:  2564 
29

Typical Experimental Procedure for 2a
To a stirred solution of Fmoc-Ala-OH (1 mmol) in dry CH2Cl2, Et3N (2 mmol) and Deoxo-Fluor (1.4 mmol) were added at 0 ˚C. After the addition of TMSN3 (1.3 mmol), the reaction mixture was subjected to ultrasonication. After 10 min, H-Leu-OMe (1.5 mmol) was added, and the ultrasonication was continued until completion of the reaction. The reaction mixture was evaporated, hexane was added, and the residue was filtered. It was washed with H2O, hexane, and dried under vacuum. Finally, the compound was recrystallized using DMSO-H2O to afford the urea as a colorless crystalline solid.

30

Selected Spectroscopic Data
Fmoc-Val-ψ(NH-CO-NH)-Leu-OBzl (2b): white solid, mp 184 ˚C. ¹H NMR (300 MHz, DMSO): δ = 0.92 (12 H, m), 1.32-1.85 (4 H, m), 3.10 (2 H, s), 3.70-3.80 (2 H, m), 4.20 (1 H, t), 4.42 (2 H, m), 5.10 (1 H, d), 6.60-6.70 (2 H, m), 7.20-7.85 (13 H, m). ¹³C NMR (200 MHz, DMSO): δ = 18.5, 19.5, 22.0, 23.1, 24.5, 29.2, 40.3, 47.2, 59.0, 66.6, 120.0, 125.1, 126.5, 127.0, 127.2, 128.4, 129.3, 137.6, 141.2, 144.0, 155.4, 156.8, 176.4. HRMS: m/z calcd for C33H39N3NaO5: 580.2787; found: 580.2774 [M + Na].
Z-Gly-ψ(NH-CO-NH)-Val-OMe (2d): Off-white solid, mp 159 ˚C. ¹H NMR (300 MHz, DMSO): δ = 0.93 (6 H, d), 3.14 (1 H, m), 3.58 (3 H, s), 4.51 (3 H, m), 5.30 (2 H, s), 6.10 (2 H, m), 6.48 (1 H, t), 7.20-7.40 (5 H, m). ¹³C NMR (200 MHz, DMSO): δ = 17.1, 31.1, 52.1, 56.2, 57.8, 65.4, 127.1, 127.2, 128.5, 141.2, 156.8, 157.5, 171.6. HRMS: m/z calcd for C16H23N3NaO5: 360.1535; found: 360.1513 [M + Na].
Boc-Glu(OBzl)-ψ(NH-CO-NH)-Ile-OMe (2e): solid, mp 138 ˚C. ¹H NMR (300 MHz, DMSO): δ = 0.91 (6 H, d), 1.30-1.45 (11 H, s), 1.65 (1 H, m), 2.55 (2 H, m), 2.90 (2 H, m), 3.65 (3 H, s), 3.80-3.90 (2 H, m), 5.15 (2 H, s), 5.30 (1 H, d), 6.35 (1 H, d), 6.50 (1 H, d), 7.30-7.40 (5 H, m). ¹³C NMR (200 MHz, DMSO): δ = 22.1, 23.1, 24.7, 28.6, 37.9, 39.7, 419, 50.9, 51.7, 61.9, 63.1, 78.7, 126.7, 127.6, 128.9, 137.7, 155.3, 156.8, 157.5, 178.1. HRMS: m/z calcd for C24H37N3NaO7: 502.2529; found: 502.2543 [M + Na].
Fmoc-Val-ψ(NH-CO-NH)-2,3,4,6-tetra-O-acetyl-β-d-glucopyranoside (3a): white solid, mp 179 ˚C. ¹H NMR (300 MHz, DMSO): δ = 0.93 (6 H, d), 1.95 (12 H, s), 3.12 (1 H, m), 4.30-4.45 (3 H, m), 4.67 (2 H, d), 4.90-5.20 (5 H, m), 5.40 (1 H, m), 5.70 (2 H, br), 6.90-7.50 (8 H, m). ¹³C NMR (200 MHz, DMSO): δ = 15.1, 20.8, 21.1, 33.2, 47.5, 59.7, 67.8, 68.0, 69.1, 69.2, 73.0, 74.8, 81.0, 126.8, 128.2, 128.4, 128.6, 141.3, 142.5, 156.0, 158.1, 170.7. HRMS: m/z calcd for C34H41N3NaO12: 706.2588; found: 706.2601 [M + Na].
(1,2),(3,4)-Diacetylgalactopyranosyl-6-NH-CO-NH-Phe-OMe (4b): solid, mp 104 ˚C. ¹H NMR (300 MHz, DMSO): δ = 1.25 (12 H, s), 3.21 (2 H, d), 3.85 (3 H, s), 4.30-4.53 (3 H, m), 4.80 (1 H, m), 5.50-5.70 (2 H, m), 6.31 (2 H, s), 7.10-7.40 (5 H, m). ¹³C NMR (200 MHz, DMSO): δ = 23.5, 34.2, 50.8, 54.2, 67.4, 69.2, 76.8, 77.9, 89.2, 107.6, 113.5, 125.4, 126.7, 127.8, 137.0, 157.2, 171.8. HRMS: m/z calcd for C22H30N2NaO8: 473.1900; found: 473.1918 [M + Na].