References and Notes
<A NAME="RD35608ST-1">1</A>
Liskamp RMJ.
Angew. Chem., Int. Ed. Engl.
1994,
33:
633
<A NAME="RD35608ST-2">2</A>
Gellman SH.
Acc.
Chem. Res.
1998,
31:
173
<A NAME="RD35608ST-3">3</A>
Burgess K.
Linthicum DS.
Shin H.
Angew.
Chem., Int. Ed. Engl.
1995,
34:
907
<A NAME="RD35608ST-4">4</A>
Nowick JS.
Abdi M.
Bellamo KA.
Love JA.
Martinez EJ.
Noronha G.
Smith EM.
Ziller JM.
J.
Am. Chem. Soc.
1995,
117:
89
<A NAME="RD35608ST-5">5</A>
Nowick JS.
Acc.
Chem. Res.
1999,
32:
287
<A NAME="RD35608ST-6">6</A>
Fischer L.
Semetey V.
Lozano JM.
Schaffiner AP.
Briand JP.
Didierjean C.
Guichard G.
Eur. J. Org. Chem.
2007,
3944
<A NAME="RD35608ST-7">7</A>
Patil BS.
Vasanthakumar GR.
Sureshbabu VV.
J. Org. Chem.
2003,
68:
7274
<A NAME="RD35608ST-8">8</A>
Boeijen A.
Liskamp RMJ.
Eur. J.
Org. Chem.
1999,
2127
<A NAME="RD35608ST-9">9</A>
Tamilarasu N.
Huq F.
Rana TM.
J.
Am. Chem. Soc.
1999,
121:
1579
<A NAME="RD35608ST-10">10</A>
Bakshi P.
Wolfe MS.
J. Med. Chem.
2004,
47:
6485
<A NAME="RD35608ST-11">11</A>
Nowick JS.
Holmer DL.
Noronha G.
Smith EM.
Nguyen JM.
Huang SL.
J.
Org. Chem.
1996,
61:
3929
<A NAME="RD35608ST-12">12</A>
Boeijen A.
Ameijde Jv.
Liskamp RMJ.
J. Org. Chem.
2001,
6:
8454
<A NAME="RD35608ST-13">13</A>
Guichard G.
Semetey V.
Didierjean C.
Aubry A.
Briand JP.
Rodriguez M.
J. Org. Chem.
1999,
64:
8702
<A NAME="RD35608ST-14">14</A>
Myers AC.
Kowalski JA.
Lipton MA.
Bioorg. Med. Chem. Lett.
2004,
14:
5219
<A NAME="RD35608ST-15">15</A>
Sureshbabu VV.
Patil BS.
Venkataramanarao R.
J. Org. Chem.
2006,
71:
7697
<A NAME="RD35608ST-16">16</A>
Sureshbabu VV.
Venkataramanarao R.
Hemantha HP.
Int. J. Pept. Res. Ther.
2008,
14:
34
<A NAME="RD35608ST-17">17</A>
Sureshbabu VV.
.
Tantry SJ.
Int.
J. Pept. Res. Ther.
2005,
11:
131
<A NAME="RD35608ST-18">18</A>
Sureshbabu VV.
Chennakrishnareddy G.
Narendra N.
Tetrahedron
Lett.
2008,
49:
1408
<A NAME="RD35608ST-19">19</A>
Baumann M.
Baxendale IR.
Ley SV.
Nikbin N.
Smith CD.
Tierney JP.
Org.
Biomol. Chem.
2008,
6:
1577
<A NAME="RD35608ST-20A">20a</A>
Lal GS.
Pez GP.
Pesaresi RJ.
Prozonic FM.
Chem. Commun.
1999,
215
<A NAME="RD35608ST-20B">20b</A>
Lal GS.
Pez GP.
Pesaresi RJ.
Prozonic FM.
Cheng H.
J. Org. Chem.
1999,
64:
7048
<A NAME="RD35608ST-21">21</A>
Singh RP.
Shreeve JM.
Synthesis
2002,
2561
<A NAME="RD35608ST-22">22</A>
Singh RP.
Chakraborty D.
Shreeve JM.
J.
Fluorine Chem.
2002,
111:
153
<A NAME="RD35608ST-23">23</A>
Kangani CO.
Day BW.
Kelley DE.
Tetrahedron
Lett.
2008,
49:
914
<A NAME="RD35608ST-24A">24a</A>
Kangani CO.
Day BW.
Kelley DE.
Tetrahedron Lett.
2007,
48:
5933
<A NAME="RD35608ST-24B">24b</A>
Kangani CO.
Kelley DE.
Tetrahedron
Lett.
2005,
46:
8917
<A NAME="RD35608ST-25">25</A>
Tunoori AR.
White JM.
Georg GI.
Org
Lett.
2000,
2:
4091
<A NAME="RD35608ST-26">26</A>
Carpino LA.
Mansour EME.
El-Fahan A.
J. Org. Chem.
1993,
58:
4162
<A NAME="RD35608ST-27">27</A>
Kaduk C.
Wenschuh H.
Beyermann M.
Forner K.
Carpino LA.
Bienert M.
Lett. Pept. Sci.
1995,
2:
285
Utility of commercial activated
zinc dust to deprotonate amine hydrochloride salts is documented.
Sureshbabu et al. demonstrated the conversion of amino acid/peptide
acid ester hydrochloride salts into the corresponding free amines, see:
<A NAME="RD35608ST-28A">28a</A>
Sureshbabu VV.
Ananda K.
J. Pept.
Res.
2001,
57:
223
<A NAME="RD35608ST-28B">28b</A> For the use of zinc dust
as HCl scavenger in peptide synthesis via N-Fmoc
amino acid chlorides under non-Schotten-Baumann conditions,
see:
Gopi HN.
Sureshbabu VV.
Tetrahedron Lett.
1998,
39:
9769
<A NAME="RD35608ST-28C">28c</A> For a similar application
in N-Boc-Z-Fmoc amino acid fluoride couplings
under neutral conditions, see:
Sureshbabu VV.
Ananda K.
Lett. Pept. Sci.
2000,
7:
41
<A NAME="RD35608ST-28D">28d</A> For the preparation of
oligomer-free Z-amino acids employing
ZCl/Zn dust, see:
Gopi HN.
Ananda K.
Sureshbabu VV.
Protein
Pept. Lett.
1999,
6:
233
<A NAME="RD35608ST-29">29</A>
Typical Experimental
Procedure for 2a
To a stirred solution of Fmoc-Ala-OH
(1 mmol) in dry CH2Cl2, Et3N (2
mmol) and Deoxo-Fluor (1.4 mmol) were added at 0 ˚C.
After the addition of TMSN3 (1.3 mmol), the reaction
mixture was subjected to ultrasonication. After 10 min, H-Leu-OMe
(1.5 mmol) was added, and the ultrasonication was continued until
completion of the reaction. The reaction mixture was evaporated,
hexane was added, and the residue was filtered. It was washed with
H2O, hexane, and dried under vacuum. Finally, the compound
was recrystallized using DMSO-H2O to afford
the urea as a colorless crystalline solid.
<A NAME="RD35608ST-30">30</A>
Selected Spectroscopic
Data
Fmoc-Val-ψ(NH-CO-NH)-Leu-OBzl (2b): white solid, mp 184 ˚C. ¹H
NMR (300 MHz, DMSO): δ = 0.92 (12 H, m), 1.32-1.85
(4 H, m), 3.10 (2 H, s), 3.70-3.80 (2 H, m), 4.20 (1 H,
t), 4.42 (2 H, m), 5.10 (1 H, d), 6.60-6.70 (2 H, m), 7.20-7.85
(13 H, m). ¹³C NMR (200 MHz, DMSO): δ = 18.5,
19.5, 22.0, 23.1, 24.5, 29.2, 40.3, 47.2, 59.0, 66.6, 120.0, 125.1,
126.5, 127.0, 127.2, 128.4, 129.3, 137.6, 141.2, 144.0, 155.4, 156.8,
176.4. HRMS: m/z calcd for C33H39N3NaO5:
580.2787; found: 580.2774 [M + Na].
Z-Gly-ψ(NH-CO-NH)-Val-OMe (2d): Off-white solid, mp 159 ˚C. ¹H
NMR (300 MHz, DMSO): δ = 0.93 (6 H, d), 3.14 (1
H, m), 3.58 (3 H, s), 4.51 (3 H, m), 5.30 (2 H, s), 6.10 (2 H, m),
6.48 (1 H, t), 7.20-7.40 (5 H, m). ¹³C
NMR (200 MHz, DMSO): δ = 17.1, 31.1, 52.1, 56.2,
57.8, 65.4, 127.1, 127.2, 128.5, 141.2, 156.8, 157.5, 171.6. HRMS: m/z calcd for C16H23N3NaO5:
360.1535; found: 360.1513 [M + Na].
Boc-Glu(OBzl)-ψ(NH-CO-NH)-Ile-OMe
(2e): solid, mp 138 ˚C. ¹H
NMR (300 MHz, DMSO): δ = 0.91 (6 H, d), 1.30-1.45
(11 H, s), 1.65 (1 H, m), 2.55 (2 H, m), 2.90 (2 H, m), 3.65 (3
H, s), 3.80-3.90 (2 H, m), 5.15 (2 H, s), 5.30 (1 H, d),
6.35 (1 H, d), 6.50 (1 H, d), 7.30-7.40 (5 H, m). ¹³C NMR
(200 MHz, DMSO): δ = 22.1, 23.1, 24.7, 28.6, 37.9, 39.7,
419, 50.9, 51.7, 61.9, 63.1, 78.7, 126.7, 127.6, 128.9, 137.7, 155.3,
156.8, 157.5, 178.1. HRMS: m/z calcd
for C24H37N3NaO7: 502.2529;
found: 502.2543 [M + Na].
Fmoc-Val-ψ(NH-CO-NH)-2,3,4,6-tetra-O-acetyl-β-d-glucopyranoside
(3a): white solid, mp 179 ˚C. ¹H
NMR (300 MHz, DMSO): δ = 0.93 (6 H, d), 1.95 (12
H, s), 3.12 (1 H, m), 4.30-4.45 (3 H, m), 4.67 (2 H, d),
4.90-5.20 (5 H, m), 5.40 (1 H, m), 5.70 (2 H, br), 6.90-7.50
(8 H, m). ¹³C NMR (200 MHz, DMSO): δ = 15.1,
20.8, 21.1, 33.2, 47.5, 59.7, 67.8, 68.0, 69.1, 69.2, 73.0, 74.8,
81.0, 126.8, 128.2, 128.4, 128.6, 141.3, 142.5, 156.0, 158.1, 170.7.
HRMS: m/z calcd for C34H41N3NaO12:
706.2588; found: 706.2601 [M + Na].
(1,2),(3,4)-Diacetylgalactopyranosyl-6-NH-CO-NH-Phe-OMe
(4b): solid, mp 104 ˚C. ¹H
NMR (300 MHz, DMSO): δ = 1.25 (12 H, s), 3.21
(2 H, d), 3.85 (3 H, s), 4.30-4.53 (3 H, m), 4.80 (1 H,
m), 5.50-5.70 (2 H, m), 6.31 (2 H, s), 7.10-7.40
(5 H, m). ¹³C NMR (200 MHz, DMSO): δ = 23.5,
34.2, 50.8, 54.2, 67.4, 69.2, 76.8, 77.9, 89.2, 107.6, 113.5, 125.4, 126.7,
127.8, 137.0, 157.2, 171.8. HRMS: m/z calcd
for C22H30N2NaO8: 473.1900;
found: 473.1918 [M + Na].
<A NAME="RD35608ST-31">31</A> First, a solution of α-d-galactose (5 mmol) and ZnBr2 (5.2 mmol)
in acetone (20 mL) was stirred for 12 h and filtered. The filtrate
was concentrated and after a simple workup, the resulting (1,2),(3,4)-diacetylgalactopyranose
was dissolved in MeCN. Then, TEMPO and Na3PO4 buffer
were added and the reaction mixture was warmed to 35 ˚C.
Sodium chlorite and bleach were added, and the reaction mixture
was stirred till completion of reaction. A simple workup lead to
the isolation of the desired sugar-6-acid. See:
Jhao M.
Li J.
Mano E.
Song Z.
Tschaen DM.
Grabowski EJJ.
Reider PJ.
J.
Org. Chem.
1999,
64:
2564