References and Notes
Total synthesis:
1a
Corey EJ.
Gin DY.
Kania RS.
J. Am. Chem. Soc.
1996,
118:
9202
1b
Endo A.
Yanagisawa A.
Abe M.
Tohma S.
Kan T.
Fukuyama T.
J. Am. Chem. Soc.
2002,
124:
6552
1c
Chen J.
Chen X.
Bois-Choussy M.
Zhu J.
J. Am. Chem. Soc.
2006,
128:
87
Formal total synthesis:
2a
Zheng S.
Chan C.
Furuuchi T.
Wright BJD.
Zhou B.
Guo J.
Danishefsky SJ.
Angew.
Chem. Int. Ed.
2006,
45:
1754
2b
Fishlock D.
Williams RM.
J. Org. Chem.
2008,
73:
9594
3 Semisynthesis: Menchaca R.
Martínez V.
Rodríguez A.
Rodríguez N.
Flores M.
Gallego P.
Manzanares I.
Cuevas C.
J. Org. Chem.
2003,
68:
8859
Other synthetic approaches:
4a
Saito N.
Kamayachi H.
Tachi M.
Kubo A.
Heterocycles
1999,
51:
9
4b
Saito N.
Tachi M.
Seki R.
Kamayachi H.
Kubo A.
Chem. Pharm. Bull.
2000,
48:
1549
4c
Vincent G.
Lane JW.
Williams RM.
Tetrahedron Lett.
2007,
48:
3719
4d
Tang Y.-F.
Liu Z.-Z.
Chen S.-Z.
Tetrahedron
Lett.
2003,
44:
7091
4e
González JF.
Salazar L.
Cuesta E.
Avendaño C.
Tetrahedron
2005,
61:
7447
4f
Chen X.
Chen J.
De Paolis M.
Zhu J.
J. Org. Chem.
2005,
70:
4397
4g
Aubry S.
Pellet-Rostaing S.
Fenet B.
Lemaire M.
Tetrahedron Lett.
2006,
47:
1319
4h
Chandrasekhar S.
Reddy NR.
Rao YS.
Tetrahedron
2006,
62:
12098
4i
Ceballos PA.
Péres M.
Cuevas C.
Francesch A.
Manzanares I.
Echavarren AM.
Eur.
J. Org. Chem.
2006,
1926
4j
Chang Y.-A.
Sun T.-H.
Chiang MY.
Lu P.-J.
Huang Y.-T.
Liang L.-C.
Ong CW.
Tetrahedron
2007,
63:
8781
4k
Obika S.
Yasui Y.
Yanada R.
Takemoto Y.
J. Org. Chem.
2008,
73:
5206
5
Scott JD.
Williams RM.
Chem. Rev.
2002,
102:
1669
6
Jin W.
Williams RM.
Tetrahedron Lett.
2003,
44:
4635
7
De Paolis M.
Chen X.
Zhu J.
Synlett
2004,
729
8
Schmidt EW.
Nelson JT.
Fillmore JP.
Tetrahedron Lett.
2004,
45:
3921
9a
Chen J.
Chen X.
Willot M.
Zhu J.
Angew. Chem.
Int. Ed.
2006,
45:
8028
9b
Chen X.
Zhu J.
Angew. Chem. Int. Ed.
2007,
46:
3962
9c
Wu Y.-C.
Liron M.
Zhu J.
J.
Am. Chem. Soc.
2008,
130:
7148
10a
Boger DL.
Yohannes D.
J.
Org. Chem.
1987,
52:
5283
10b
Heinrich MR.
Steglich W.
Tetrahedron
2003,
59:
9231
11a
Hudgens TL.
Turnbull KD.
Tetrahedron Lett.
1999,
40:
2719
11b For a comprehensive review,
see: Farina V.
Krishnamurthy V.
Scott WJ.
Org. React.
1997,
50:
1
12a
Gray M.
Endrews IP.
Hook DF.
Kitteringham J.
Voyle M.
Tetrahedron Lett.
2000,
41:
6237
12b For a review, see: Miyaura N.
Suzuki A.
Chem. Rev.
1995,
95:
2457
13
Conversion of
6 into 8 by Suzuki-Miyaura Reaction
To a
solution of the iodoester (6, 250 mg, 0.49
mmol), K2CO3 (138 mg, 1 mmol, 2 equiv), Pd(PPh3)4 (56
mg, 0.05 mmol, 0.1 equiv), and BHT (15 mg, 0.05 mmol, 0.1 equiv) in
degassed dioxane (2.0 mL), TMB (204 µL, 184 mg, 1.5 equiv)
was added dropwise under argon. After being heated at 100 ˚C
under microwave conditions for 2 h (Microwave heating with a Discover
microwave reactor from CEM. Irradiation power: 20 W; ramp time:
5 min, 100 ˚C), the mixture was filtered over Celite and
purified by flash column chromatography (heptane-EtOAc,
9:1 to 7:3) to afford the desired product 8 (172
mg, 0.42 mmol, 85%) as a yellow oil; [α]D
²8.4 +43
(c 2.0, CHCl3). IR: 3340,
2950, 1715, 1697, 1681, 1518, 1435, 1354, 1257, 1213, 1177, 1058,
1003, 738, 697 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 7.20-7.37
(m, 5 H), 7.16 (d, J = 2.2
Hz, 1 H), 7.04 (d, J = 2.2
Hz, 1 H), 5.22 (br d, J = 7.9
Hz, 1 H), 5.10 (d, J = 12.2
Hz, 1 H), 5.05 (d, J = 12.2
Hz, 1 H), 4.60 (br m, 1 H), 3.67-3.73 (m, 6 H), 3.07 (dd, J = 14.0,
5.3 Hz, 1 H), 2.99 (dd, J = 14.0,
6.1 Hz, 1 H), 2.57 (s, 3 H), 2.24 (s, 3 H). ¹³C
NMR (75 MHz, CDCl3): δ = 200.6, 171.8,
157.0, 155.6, 135.8, 133.2, 132.4, 128.6, 128.3, 128.1, 67.0, 61.8,
54.8, 52.4, 37.4, 30.5, 16.1. MS (ESI+, MeOH): m/z = 422.1 [M + Na]+.
HRMS (ESI+, MeOH): m/z [M + Na]+ calcd
for C22H25NO6Na: 422.1580; found:
422.1570.
14 For a recent example from our group
showing the distinct difference of thermal and microwave-assisted
Suzuki-Miyaura reaction, see: Lépine R.
Zhu J.
Org. Lett.
2005,
7:
2981
15
Chen C.
Zhu Y.-F.
Wilcoxen K.
J.
Org. Chem.
2000,
65:
2574
16
Conversion of
8 into 9 by Baeyer-Villiger Oxidation
To
a solution of the accetophenone (8, 40.0
mg, 1.0 mmol) in CH2Cl2 (1 mL), MCPBA (70%;
50 mg, 2.0 mmol, 2.0 equiv) was added. After being stirred at r.t.
for 5 d, the reaction mixture was diluted with aq Na2CO3 and
extracted with CH2Cl2. The combined extracts
were washed with aq Na2CO3, brine and dried
(Na2SO4). Evaporation of the volatile under
reduced pressure afforded the desired acetate 9 (35.7
mg, 86%) as a pale yellow oil; [α]D
²8.4 +37
(c 1.0, CHCl3). IR: 3332,
2950, 1715 (br), 1519, 1493, 1435, 1230, 1199, 1045, 1004, 738,
697 cm-¹. ¹H NMR
(300 MHz, CDCl3): δ = 7.20-7.37
(m, 5 H), 6.78 (br s, 1 H), 6.66 (br s, 1 H), 5.49 (br d, J = 8.0 Hz,
1 H), 5.10 (d, J = 12.2
Hz, 1 H), 5.04 (d, J = 12.2
Hz, 1 H), 4.58 (br m, 1 H), 3.69 (s, 3 H), 3.62 and 3.67 (rotamers,
3 H), 3.01 (dd, J = 14.1,
5.8 Hz,
1 H), 2.94 (dd, J = 14.1,
6.6 Hz, 1 H), 2.20 (s, 3 H), 2.25 (s, 3 H). ¹³C
NMR (75 MHz, CDCl3): δ = 172.0, 169.0,
155.6, 149.0, 143.6, 136.4, 133.7, 131.7, 129.4, 128.5, 128.1, 128.0,
121.7, 67.0, 60.5, 54.9, 52.3, 37.4, 20.8, 16.0. MS (ESI+,
MeOH): m/z = 438.1 [M + Na]+.
HRMS (ESI+, MeOH): m/z [M + Na]+ calcd
for C22H25NO7Na: 438.1529; found:
438.1488.
17
Bovicelli P.
Antonioletti R.
Barontini M.
Borioni G.
Bernini R.
Mincione E.
Tetrahedron Lett.
2005,
46:
1255
18
Guzmán JA.
Mendoza V.
García E.
Garibay CF.
Olivares LZ.
Maldonado LA.
Synth.
Commun.
1995,
25:
2121
19
Conversion of
10 into 1 by Hydrogenolysis
To a solution of the amino
alcohol 10 (3.8 g, 11.0 mmol) in anhyd
MeOH (60 mL), Pd/C (400 mg) was added. The mixture was
degassed and flushed several times with H2. The reaction
was stirred at r.t. under H2 for 2 h. Filtration over
Celite and concentration under vacuum gave the final product 1 (2.3 g, 100%) as a pale yellow
oil; [α]D
²7.4 -15
(c 1.0, MeOH). IR: 3346, 2928, 1585,
1435, 1316, 1216, 1142, 1047, 1000, 860, 822 cm-¹. ¹H
NMR (300 MHz, CD3OD):
δ = 6.56
(d, J = 2.0
Hz, 1 H), 6.49 (d, J = 2.0
Hz, 1 H), 3.69 (s, 3 H), 3.56 (dd, J = 11.1,
4.0 Hz, 1 H), 3.39 (dd, J = 11.1, 6.7
Hz, 1 H), 3.12 (br m, 1 H), 2.65 (dd, J = 13.6,
6.8 Hz, 1 H), 2.52 (dd, J = 13.6,
7.2 Hz, 1 H), 2.17 (s, 3 H). ¹³C NMR (75
MHz, CD3OD): δ = 149.8, 144.8, 133.3,
131.5, 122.1, 114.7, 63.2, 59.1, 54.2, 37.1, 14.7. MS (ESI+,
MeOH):
m/z = 212.1 [M + H]+,
234.1 [M + Na]+.
HRMS (ESI+, MeOH): m/z [M + Na]+ calcd
for C22H25NO7Na: 234.1106; found:
234.1101.
We found that addition of BHT led
to more reproducible results on this coupling reaction; BHT may
suppress the oxidation of palladium species by adventurous oxygen
and extend consequently the catalytic cycle. See:
20a
McKean DR.
Parrinello G.
Renaldo AF.
Stille JK.
J.
Org. Chem.
1987,
52:
422
20b
Cooper CB.
MacFarland JW.
Blair KT.
Fontaine EH.
Jones CS.
Muzzi ML.
Bioorg.
Med. Chem. Lett.
1994,
4:
835
21 On a fifty-gram scale, we used Stille
coupling for the conversion of 6 into 8 due to the price difference between tetramethyltin
(Aldrich: 50 mL, 145 ı) and trimethyl-boroxine (Aldrich:
5 g, 116 ı). The overall yield in this case is about 41%.