Abstract
Selected recent developments in the area of (thio)urea-mediated
organocatalysis from our laboratory are summarised.
1 Introduction and Background
2 Catalysis with Achiral (Thio)ureas
2.1 The Baylis-Hillman Reaction
2.2 The Corey-Chaykovsky Reaction
2.3 Organocatalytic Reduction of Ketones
2.4 Ring Opening of Epoxides
3 Catalysis with Chiral (Thio)ureas
3.1 Modified Cinchona Alkaloid Derivatives
3.1.1 Asymmetric Michael Addition
3.1.2 Asymmetric Nitroolefin Cyclopropanation
3.1.3 meso -Anhydride Desymmetrisation
3.1.4 Dynamic Kinetic Resolution of Azlactones
3.2 Friedel-Crafts-type Reactions: Axially Chiral Thioureas
4 Summary
Key words
organocatalysis - Michael additions - asymmetric
synthesis - nitroalkenes - sulfonium ions
References
For selected recent reviews dealing
with organocatalysis, see:
1a
Alcaide B.
Almendros P.
Angew. Chem. Int. Ed.
2008,
47:
4632
1b
Yu X.
Wang W.
Org. Biomol. Chem.
2008,
6:
2037
1c
Dondoni A.
Massi A.
Angew. Chem. Int. Ed.
2008,
47:
4638
1d
Connon SJ.
Org. Biomol. Chem.
2007,
5:
3407
1e
Ting A.
Schaus SE.
Eur. J. Org. Chem.
2007,
5797
1f
Lelais G.
MacMillan DWC. In
Frontiers in Asymmetric Catalysis
Mikami K.
Lautens M.
Wiley;
Hoboken:
2007.
1g
Almaşi D.
Alonso DA.
Nájera C.
Tetrahedron: Asymmetry
2007,
18:
299
1h
de Figueiredo RM.
Christmann M.
Eur.
J. Org. Chem.
2007,
2575
1i
Tsogoeva SB.
Eur. J. Org. Chem.
2007,
1701
1j
Mukherjee S.
Yang JW.
Hoffmann S.
List B.
Chem. Rev.
2007,
107:
5471
1k
Erkkilä A.
Majander I.
Pihko PM.
Chem. Rev.
2007,
107:
5416
1l
Gaunt MJ.
Johansson CCC.
Chem.
Rev.
2007,
107:
5596
1m
Enders D.
Niemeier O.
Henseler A.
Chem.
Rev.
2007,
107:
5606
1n
Atodiresi I.
Schiffers I.
Bolm C.
Chem.
Rev.
2007,
107:
5683
1o
Doyle AG.
Jacobsen
EN.
Chem.
Rev.
2007,
107:
5713
1p
McGarrigle EM.
Myers EL.
Illa O.
Shaw MA.
Riches SL.
Aggarwal VK.
Chem.
Rev.
2007,
107:
5841
1q
Wurz RP.
Chem. Rev.
2007,
107:
5570
1r
Connon SJ.
Angew. Chem. Int. Ed.
2006,
45:
3909
1s
List B.
Chem.
Commun.
2006,
819
1t
Taylor MS.
Jacobsen EN.
Angew.
Chem. Int. Ed.
2006,
45:
1520
1u
Akiyama T.
Itoh J.
Fuchibe K.
Adv. Synth.
Catal.
2006,
348:
999
1v
Connon SJ.
Lett. Org. Chem.
2006,
3:
333
1w
Gaunt MJ.
Johansson CCC.
McNally A.
Vo NT.
Drug
Discovery Today
2007,
12:
8
For selected reviews of (thio)urea-based
organocatalysis, see:
2a
Connon SJ.
Chem. Commun.
2008,
2499
2b
Connon SJ.
Chem. Eur. J.
2006,
12:
5418
2c
Takemoto Y.
Org.
Biomol. Chem.
2005,
3:
4299
2d
Schreiner PR.
Chem. Soc. Rev.
2003,
32:
289
3
Hine J.
Ahn K.
Gallucci JC.
Linden S.-M.
J. Am. Chem. Soc.
1984,
106:
7980
4
Hine J.
Linden S.-M.
Kanagasabapathy VM.
J.
Am. Chem. Soc.
1985,
107:
1082
5
Hine J.
Linden S.-M.
Kanagasabapathy VM.
J.
Org. Chem.
1985,
50:
5096
For further work on the same topic,
see:
6a
Hine J.
Hahn S.
Miles DE.
Ahn K.
J. Org. Chem.
1985,
50:
5092
6b
Hine J.
Hahn S.
Miles DE.
J.
Org. Chem.
1986,
51:
577
6c
Hine J.
Ahn K.
J. Org. Chem.
1987,
52:
2083
6d
Hine J.
Ahn K.
J. Org. Chem.
1987,
52:
2089
7
Kelly TR.
Meghani P.
Ekkundi VS.
Tetrahedron
Lett.
1990,
31:
3381
8a
Etter MC.
Panunto TW.
J. Am. Chem. Soc.
1988,
110:
5896
8b
Etter MC.
Urbañczyk-Lipkowska Z.
Zia-Ebrahimi M.
Panunto TW.
J.
Am. Chem. Soc.
1990,
112:
8415
9 Previously, Tel and Engberts had
obtained a crystal structure of an unstable N ,N ′-bis(α-tosylbenzyl)urea-acetone hydrogen-bonded
adduct; see: Tel RM.
Engberts
JBFN.
J.
Chem. Soc., Perkin Trans. 2
1976,
483
For further general references,
see:
10a
Etter MC.
Acc. Chem. Res.
1990,
23:
120
10b
Etter MC.
J. Phys. Chem.
1991,
95:
4601
10c
Kelly TR.
Kim MH.
J.
Am. Chem. Soc.
1994,
116:
7072
11
Curran DP.
Kuo LH.
J. Org. Chem.
1994,
59:
3259
12
Curran DP.
Kuo LH.
Tetrahedron Lett.
1995,
36:
6647
13
Sigman MS.
Jacobsen EN.
J. Am. Chem. Soc.
1998,
120:
4901
14a
Sigman MS.
Vachal P.
Jacobsen EN.
Angew. Chem. Int.
Ed.
2000,
39:
1279
14b
Su JT.
Vachal P.
Jacobsen EN.
Adv.
Synth. Catal.
2001,
343:
197
14c
Vachal P.
Jacobsen EN.
Org. Lett.
2000,
2:
867
14d
Vachal P.
Jacobsen EN.
J. Am. Chem. Soc.
2002,
124:
10012
15
Schreiner PR.
Wittkopp A.
Org. Lett.
2002,
4:
217
16
Schreiner PR.
Wittkopp A.
Chem. Eur. J.
2003,
9:
407
17
March J.
Advanced Organic Chemistry
4th
ed.:
Wiley-Interscience;
New York:
1992.
18 Baylis AB, and Hillman MED. inventors; Ger.
Offen. 2155113.
; US
Patent 3743669; Chem. Abstr. 1972 , 77 , 34174q
For selected reviews, see:
19a
Masson G.
Housseman C.
Zhu J.
Angew.
Chem. Int. Ed.
2007,
46:
4614
19b
Basavaiah D.
Rao AJ.
Satyanarayana T.
Chem.
Rev.
2003,
103:
811
19c
Langer P.
Angew.
Chem. Int. Ed.
2000,
39:
3049
20a
Hill JS.
Issacs NS.
J.
Phys. Org. Chem.
1990,
3:
285
20b
Bode ML.
Kaye PT.
Tetrahedron
Lett.
1991,
32:
5611
21a
Price KE.
Broadwater SJ.
Jung HM.
McQuade DT.
Org. Lett.
2005,
7:
147
21b
Price KE.
Broadwater SJ.
Walker BJ.
McQuade DT.
J.
Org. Chem.
2005,
70:
3980
22
Aggarwal VK.
Fulford SY.
Lloyd-Jones GC.
Angew. Chem. Int. Ed.
2005,
44:
1706
23 This mechanistic rationale was partially
supported by a study on the aza-Baylis-Hillman reaction
from Leitner’s group, which found rate-limiting elimination
in the absence of protic derivatives but not in the presence of
the same (although, significantly, without observable autocatalysis); see: Buskens P.
Klankermeyer J.
Leitner W.
J. Am. Chem. Soc.
2005,
127:
16762
We later observed the same relationship
between catalyst basicity (all other things being approximately
equal) and reactivity in the amine-catalysed hydroalkoxylation of Michael
acceptors; see:
24a
Faltin C.
Fleming EM.
Connon SJ.
J. Org. Chem.
2004,
69:
6496
24b
Murtagh
JE.
McCooey SH.
Connon SJ.
Chem. Commun.
2005,
227
For examples, see:
25a
Hamann BC.
Branda NR.
Rebek JR.
Tetrahedron Lett.
1993,
34:
6837
25b
Smith PJ.
Reddington MV.
Wilcox CS.
Tetrahedron Lett.
1992,
33:
6085
25c
Wilcox CS.
Kim E.-I.
Romano D.
Kuo LH.
Burt AL.
Curran DP.
Tetrahedron
1995,
51:
621
25d
Scheerder J.
Engbersen
JFJ.
Casnati A.
Ungaro R.
Reinhoudt DN.
J. Org. Chem.
1995,
60:
6448
25e
Nishizawa S.
Kato R.
Hayashita T.
Teramae N.
Anal. Sci.
1998,
14:
595
25f
Nam KC.
Kang SO.
Ko SW.
Bull. Korean Chem. Soc.
1999,
20:
953
26
Maher DJ.
Connon SJ.
Tetrahedron Lett.
2004,
45:
1301
27 The pK
a (DMSO)
values for N ,N ′-diphenylurea
and N ,N ′-diphenylthiourea
are 19.55 and 13.4, respectively; see: Bordwell FG.
Acc. Chem. Res.
1988,
21:
456
28a
Ameer F.
Drewes SE.
Freese S.
Kaye PT.
Synth. Commun.
1988,
18:
495
28b
Drewes SE.
Freese SD.
Emslie ND.
Roos GHP.
Synth.
Commun.
1988,
18:
1565
29
Aggarwal VK.
Emme I.
Fulford SY.
J.
Org. Chem.
2003,
68:
692
30a
Johnson AW.
LaCount RB.
J. Am. Chem. Soc.
1961,
83:
417
30b
Corey EJ.
Chaykovsky M.
J. Am.
Chem. Soc.
1962,
84:
867
30c
Franzen V.
Driesen H.-E.
Chem. Ber.
1963,
96:
1881
30d
Corey EJ.
Chaykovsky M.
J. Am. Chem.
Soc.
1965,
87:
1353
For recent reviews, see reference
1p and:
31a
Li A.-H.
Dai L.-X.
Aggarwal VK.
Chem.
Rev.
1997,
97:
2341
31b
Aggarwal VK.
Richardson J.
Chem.
Commun.
2003,
2644
31c
Aggarwal VK.
Winn CL.
Acc.
Chem. Res.
2004,
37:
611
For examples, see:
32a
Merz A.
Märk G.
Angew. Chem., Int. Ed.
Engl.
1973,
12:
845
32b
Bermand C.
Comel A.
Kirsch G.
ARKIVOC
2000,
(ii):
128
32c
Borredon ME.
Delmas M.
Gaset A.
Tetrahedron
Lett.
1982,
23:
5283
32d
Borredon ME.
Delmas M.
Gaset A.
Tetrahedron
1987,
43:
3945
32e
Bouda H.
Borredon ME.
Delmas M.
Gaset A.
Synth. Commun.
1987,
17:
503
32f
Lemini C.
Ordonez M.
Pérez-Flores J.
Cruz-Almanza R.
Synth. Commun.
1995,
25:
2695
32g
Ahmed A.
Hoegenauer
EK.
Enev VS.
Hanbauer M.
Kaehlig H.
Oehler E.
Mulzer J.
J. Org. Chem.
2003,
68:
3026
33 See reference
[²7 ]
for
details.
34 For a recent study on the mechanism
of the Corey-Chaykovsky reaction, see: Edwards DR.
Montoya-Peleaz P.
Crudden CM.
Org. Lett.
2007,
9:
5481
35
Kavanagh SA.
Piccinini A.
Fleming EM.
Connon SJ.
Org. Biomol. Chem.
2008,
6:
1339
For selected examples, see:
36a
Ohnishi Y.
Kagami M.
Ohno A.
J.
Am. Chem. Soc.
1975,
97:
4766
36b
de Vries
JG.
Kellogg RM.
J.
Am. Chem. Soc.
1979,
101:
2759
36c
Ohno A.
Ikeguchi M.
Kimura T.
Oka S.
J. Am. Chem. Soc.
1979,
101:
7036
36d
Jouin P.
Troostwijk
CB.
Kellogg RM.
J. Am. Chem. Soc.
1981,
103:
2091
36e
Kanomata N.
Nakata T.
Angew. Chem., Int. Ed. Engl.
1997,
36:
1207
36f
Saito R.
Naruse S.
Takano K.
Fukuda K.
Katoh A.
Inoue Y.
Org. Lett.
2006,
8:
2067
37 For a recent review of this topic,
see reference
[¹d ]
.
For examples, see:
38a
Wang JW.
Hechavarria Fonseca MT.
List B.
Angew. Chem. Int. Ed.
2004,
43:
6660
38b
Wang JW.
Hechavarria Fonseca MT.
Vignola N.
List B.
Angew.
Chem. Int. Ed.
2005,
44:
108
38c
Ouellet SG.
Tuttle JB.
MacMillan DWC.
J. Am. Chem. Soc.
2005,
127:
32
38d
Wang JW.
Hechavarria Fonseca MT.
List B.
J. Am. Chem. Soc.
2005,
127:
15036
38e
Huang Y.
Walji AM.
Larsen CH.
MacMillan DWC.
J.
Am. Chem. Soc.
2005,
127:
15051
38f
Mayer S.
List B.
Angew. Chem. Int. Ed.
2006,
45:
4195
39a
Rueping M.
Sugiono E.
Theissmann T.
Synlett
2005,
2367
39b
Rueping M.
Sugiono E.
Azap C.
Theissmann T.
Bolte M.
Org. Lett.
2005,
7:
3781
39c
Hoffmann S.
Seayad AM.
List B.
Angew.
Chem. Int. Ed.
2005,
44:
7424
39d
Storer RI.
Carrera DE.
Ni Y.
MacMillan
DWC.
J.
Am. Chem. Soc.
2006,
128:
84
39e
Rueping M.
Thiessmann T.
Antonchick AP.
Synlett
2006,
1071
39f
Rueping M.
Antonchick AP.
Thiessmann T.
Angew. Chem.
Int. Ed.
2006,
45:
3683
40
Procuranti B.
Connon SJ.
Chem. Commun.
2007,
1421
41 This hypothesis is supported by the
presence of the reduced form of BNA as the only heterocyclic species
observable (by ¹ H NMR spectroscopy) in the reduction
of benzoin by BNA (organic phase).
42 It is assumed that product inhibition
is not problematic in the systems being studied. To ensure that
this is the case, the stability of the product-catalyst
complex should be calculated and compared with that of the corresponding catalyst-substrate
complex.
For examples of metal(ion)-based
catalysis of this reaction, see:
43a
Kantam ML.
Laha S.
Yadav J.
Sreedhar B.
Tetrahedron Lett.
2006,
47:
6213
43b
Azizi M.
Mehrazama S.
Saidi MR.
Can.
J. Chem.
2006,
84:
800
43c
Bandini M.
Fagioli M.
Melloni A.
Umani-Ronchi A.
Adv. Synth. Catal.
2004,
346:
573
43d For an example of this
reaction in trifluoroethanol solvent, see: Bandini M.
Cozzi PG.
Melchiorre P.
Umani-Ronchi A.
J. Org. Chem.
2002,
67:
5386
43e
Westermaier M.
Mayr H.
Chem. Eur. J.
2008,
14:
1638
44
Fleming EM.
Quigley C.
Rozas I.
Connon SJ.
J. Org. Chem.
2008,
73:
948
45 Schreiner had previously demonstrated
powerful cooperative catalysis between water and 6 in
the addition of amines to epoxides; however,
poor amine nucleophiles such as anilines were not used. Relatively
nonselective additions of alcohols and thiols to an epoxide were
also reported; see: Kleiner CM.
Schreiner PR.
Chem. Commun.
2006,
4315
46 Recently, Schreiner and co-workers
demonstrated impressive cooperative catalysis between 6 and mandelic acid in the alcoholysis
of epoxides; see: Weil T.
Kotke M.
Kleiner CM.
Schreiner PR.
Org. Lett.
2008,
10:
1513
47
Hiemstra H.
Wynberg H.
J. Am. Chem. Soc.
1981,
103:
417
48
Okino T.
Hoashi Y.
Takemoto Y.
J.
Am. Chem. Soc.
2003,
125:
12672
49
Okino T.
Hoashi Y.
Furukawa T.
Xu X.
Takemoto Y.
J.
Am. Chem. Soc.
2005,
127:
119
For examples of metal(ion)-based
catalytic systems for this reaction, see:
50a
Ji J.
Barnes DM.
Zhang J.
King SA.
Wittenberger SJ.
Morton HE.
J.
Am. Chem. Soc.
1999,
121:
10215
50b
Barnes DM.
Ji J.
Fickes MG.
Fitzgerald MA.
King SA.
Morton HE.
Plagge FA.
Preskill M.
Wagaw SH.
Wittenberger SJ.
Zhang J.
J.
Am. Chem. Soc.
2002,
124:
13097
50c
Watanabe M.
Ikagawa A.
Wang H.
Murata K.
Ikariya T.
J. Am. Chem. Soc.
2004,
126:
11148
51 Deng and co-workers have also catalysed
this reaction using 6′-demethylated cinchona alkaloid catalysts;
see: Li H.
Wang Y.
Tang L.
Deng L.
J.
Am. Chem. Soc.
2004,
126:
9906
52
McCooey SH.
Connon SJ.
Angew. Chem. Int.
Ed.
2005,
44:
6367
53 It is worth noting that Pápai
and co-workers have recently proposed an alternative mechanistic
picture based on computational studies; see: Hamza A.
Schubert G.
Soós T.
Pápai I.
J. Am. Chem. Soc.
2006,
128:
13151
54
Li B.-J.
Jiang L.
Liu M.
Chen Y.-C.
Ding L.-S.
Wu Y.
Synlett
2005,
603
55
Vakulya B.
Varga S.
Csámpai A.
Soós T.
Org. Lett.
2005,
7:
1967
56
Ye J.
Dixon DJ.
Hynes PS.
Chem.
Commun.
2005,
4481
57a
Wessjohann LA.
Brandt W.
Thiemann T.
Chem. Rev.
2003,
103:
1625
57b
Donaldson WA.
Tetrahedron
2001,
57:
8589
57c
Faust D.
Angew.
Chem. Int. Ed.
2001,
40:
2251
58a
Gnad F.
Reiser O.
Chem.
Rev.
2003,
103:
1603
58b
Cativelia C.
Diaz-de-Villegas MD.
Tetrahedron: Asymmetry
2000,
11:
645
58c
De Pol S.
Zorn C.
Klein
CD.
Zerbe O.
Reiser O.
Angew.
Chem. Int. Ed.
2004,
43:
511
59 Aggarwal and co-workers have reported
a Cu(acac)2 -catalysed cycloaddition of sulfonium ylides
to Michael acceptors which gives good yields and stereoselectivities with
enone substrates but poor yields and diastereoselectivities with
nitroolefins; see: Aggarwal
VK.
Smith HW.
Hynd G.
Jones RVH.
Fieldhouse R.
Spey SE.
J.
Chem. Soc., Perkin Trans. 1
2000,
3267
Catalytic asymmetric Simmons-Smith-type cyclopropanation
methodologies are best suited to electron-rich olefin substrates;
see:
60a
Lebel H.
Marcoux F.
Molinaro C.
Charette AB.
Chem. Rev.
2003,
103:
977
60b
Hartley RC.
Caldwell ST.
J.
Chem. Soc., Perkin Trans. 1
2000,
477
60c
Lautens M.
Klute W.
Tam W.
Chem.
Rev.
1996,
96:
49
For representative references concerning
the development of asymmetric Michael-based cyclopropanation methodologies,
see:
61a
Aggarwal VK.
Smith HW.
Jones RVH.
Fieldhouse R.
Chem.
Commun.
1997,
1785
61b
Aggarwal VK.
Alonso E.
Fang G.
Ferrara M.
Hynd G.
Porcelloni M.
Angew. Chem. Int. Ed.
2001,
40:
1433
61c
Papageorgiou CD.
Ley SV.
Gaunt MJ.
Angew. Chem. Int. Ed.
2003,
42:
828
61d
Bremeyer N.
Smith SC.
Ley SV.
Gaunt MJ.
Angew. Chem. Int. Ed.
2004,
43:
2681
61e
Papageorgiou CD.
Cubillo de Dios MA.
Ley SV.
Gaunt MJ.
Angew. Chem. Int. Ed.
2004,
43:
4641
61f
Kunz RK.
MacMillan DWC.
J.
Am. Chem. Soc.
2005,
127:
3240
61g
Deng X.-M.
Cai P.
Ye S.
Sun X.-L.
Liao W.-W.
Li K.
Tang Y.
Wu Y.-D.
Dai L.-X.
J. Am. Chem. Soc.
2006,
128:
9730
61h
Aggarwal VK.
Acc. Chem. Res.
2004,
37:
611
62
McCooey SH.
McCabe T.
Connon SJ.
J.
Org. Chem.
2006,
71:
7494
63 For a recent review of asymmetric
cyclopropanation, see: Pellissier H.
Tetrahedron
2008,
64:
7041
For reviews, see reference 1n and:
64a
Wong C.-H.
Whitesides GM.
Enzymes
in Synthetic Organic Chemistry
Elsevier;
Oxford:
1994.
64b
Willis MC.
J. Chem. Soc., Perkin Trans. 1
1999,
175
64c
Spivey AC.
Andrews BI.
Angew.
Chem. Int. Ed.
2001,
40:
3131
64d
Chen Y.
McDaid P.
Deng L.
Chem.
Rev.
2003,
103:
2965
64e
Tian S.-K.
Chen Y.
Hang J.
Tang L.
McDaid P.
Deng L.
Acc.
Chem. Res.
2004,
37:
621
65a
Bolm C.
Gerlach A.
Dinter CL.
Synlett
1999,
195
65b
Bolm C.
Schiffers I.
Dinter CL.
Gerlach A.
J. Org. Chem.
2000,
65:
6984
65c See also: Bolm C.
Schiffers I.
Atodiresei I.
Hackenberger PR.
Tetrahedron:
Asymmetry
2003,
14:
3455
65d
Rodríguez B.
Rantanen T.
Bolm C.
Angew. Chem. Int. Ed.
2006,
45:
6924
66
Chen Y.
Tian S.-K.
Deng L.
J.
Am. Chem. Soc.
2000,
122:
9542
67a
Hiratake J.
Yamamoto Y.
Oda J.
J. Chem. Soc., Chem. Commun.
1985,
1717
67b
Hiratake J.
Inagaki M.
Yamamoto Y.
Oda J.
J. Chem. Soc., Perkin Trans. 1
1987,
1053
68 Mass spectroscopic evidence supporting
a nucleophilic catalysis mechanism has also been reported. Thus,
it should be noted that both mechanisms may operate simultaneously; see: Bigi F.
Carloni S.
Maggi R.
Mazzacani A.
Sartori G.
Tanzi G.
J. Mol. Catal.
A: Chem.
2002,
182-183:
533
69
Peschiulli A.
Gun’ko Y.
Connon SJ.
J. Org. Chem.
2008,
73:
2454
70 A simple base wash, extraction, acidification
and extraction sequence furnishes pure product.
71 Very shortly after our paper, a
similar study using higher catalyst loadings (10 mol%)
was reported; see: Rho SH.
Oh SH.
Lee JW.
Lee JY.
Chin J.
Song CE.
Chem. Commun.
2008,
1208
72a
Faber K.
Chem. Eur. J.
2001,
7:
5004
72b
Pellissier H.
Tetrahedron
2003,
59:
8291
73
De Jersey J.
Zerner B.
Biochemistry
1969,
8:
1967
74a
Berkessel A.
Cleemann F.
Mukherjee S.
Müller
TN.
Lex J.
Angew. Chem.
Int. Ed.
2005,
44:
807
74b
Berkessel A.
Mukherjee S.
Cleemann F.
Müller
TN.
Lex J.
Chem. Commun.
2005,
1898
74c
Berkessel A.
Mukherjee S.
Müller TN.
Cleemann F.
Roland K.
Brandenburg M.
Neudörfl J.-M.
Lex J.
Org. Biomol. Chem.
2006,
4:
4319
75
Peschiulli A.
Quigley C.
Tallon S.
Gun’ko YK.
Connon SJ.
J. Org. Chem.
2008,
73:
6409
76a
Dawson PE.
Muir TW.
Clark-Lewis I.
Kent SB.
Science
(Washington, D.C.)
1994,
266:
776
76b
Macmillan D.
Angew.
Chem. Int. Ed.
2006,
45:
7668
77 Only one such protocol has been
reported; see: Honjo T.
Sano S.
Shiro M.
Nagao Y.
Angew.
Chem. Int. Ed.
2005,
44:
5838
For reviews, see:
78a
Bandini M.
Melloni A.
Tommasi S.
Umani-Ronchi A.
Synlett
2005,
1199
78b
Bandini M.
Melloni A.
Umani-Ronchi A.
Angew.
Chem. Int. Ed.
2004,
43:
550
78c
Jørgensen KA.
Synthesis
2003,
1117
79a
Paras NA.
MacMillan DWC.
J. Am. Chem. Soc.
2001,
123:
4370
79b
Austin JF.
MacMillan DWC.
J.
Am. Chem. Soc.
2002,
124:
1172
80 For a recent review of iminium catalysis,
see reference
[¹k ]
.
81
Dessole G.
Herrera RP.
Ricci A.
Synlett
2004,
2374
82a For
a related report, see: Herrera RP.
Sgarzani V.
Bernardi L.
Ricci A.
Angew. Chem. Int. Ed.
2005,
44:
6576
82b
Herrera RP.
Monge D.
Martín-Zamora E.
Fernández R.
Lassaletta JM.
Org. Lett.
2007,
9:
3303
83
Fleming EM.
McCabe T.
Connon SJ.
Tetrahedron Lett.
2006,
47:
7037
84 During the course of our work, Jørgensen
and co-workers reported a non-(thio)urea-based catalyst for these
reactions. Product enantioselectivity was of the same order as that found
in our study; however, using their system, aliphatic substrates
proved more difficult than their aromatic counterparts; see: Zhuang W.
Hazell RG.
Jørgensen
KA.
Org. Biomol. Chem.
2005,
3:
2566
85 For examples of the demonstrable s -cis ,cis -conformational preference of(thio)ureas,
see references
[8 ]
,
[9 ]
and
[49 ]
.