References and Notes
See, for example:
1a
Perlmutter P. In
Conjugate Addition Reactions in Organic Synthesis
Pergamon;
Oxford:
1992.
1b
Tomioka K.
Nagaoka Y. In Comprehensive Asymmetric
Catalysis
Vol. 3:
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
Berlin:
1999.
Ch.
31.1.
1c
Kanai M.
Shibasaki M. In Catalytic
Asymmetric Synthesis
2nd ed.:
Ojima I.
Wiley;
New York:
2000.
p.569
1d
Sibi MP.
Manyem S.
Tetrahedron
2000,
56:
8033
1e
Krause N.
Hoffmann-Röder A.
Synthesis
2001,
171
1f
Lipshutz BH. In Organometallics
in Organic Synthesis. A Manual
2nd ed.:
Schlosser M.
Wiley;
Chichester:
2002.
p.665 ; and references cited therein
2 First report: Sakai M.
Hayashi H.
Miyaura N.
Organometallics
1997,
16:
4229
Reviews:
3a
Hayashi T.
Synlett
2001,
879
3b
Fagnou K.
Lautens M.
Chem. Rev.
2003,
103:
169
3c
Hayashi T.
Yamasaki K.
Chem. Rev.
2003,
103:
2829
3d
Hayashi T.
Pure
Appl. Chem.
2004,
76:
465
3e
Hayashi T.
Bull. Chem.
Soc. Jpn.
2004,
77:
13
3f
Yoshida K.
Hayashi T. In
Modern Rhodium-Catalyzed Organic Reactions
Evans PA.
Wiley-VCH;
Weinheim:
2005.
Chap.
3.
p.55
For recent leading references, see:
4a
Fredrick MA.
Hulce M.
Tetrahedron
1997,
53:
10197
4b
Krause N.
Gerold A.
Angew. Chem., Int. Ed. Engl.
1997,
36:
186
4c
Krause N.
Thorand S.
Inorg. Chim. Acta
1999,
296:
1
4d
Fukuhara K.
Urabe H.
Tetrahedron Lett.
2005,
46:
603
4e
Yoshikai N.
Yamashita T.
Nakamura E.
Angew. Chem.
Int. Ed.
2005,
44:
4721
4f
Fillion E.
Wilsily A.
Liao ET.
Tetrahedron:
Asymmetry
2006,
17:
2957
4g
Bernardi L.
López-Cantarero J.
Niess B.
Jørgensen KA.
J. Am.
Chem. Soc.
2007,
129:
5772
4h
Hartog T.
Harutyunyan SR.
Font D.
Minnaard AJ.
Feringa BL.
Angew. Chem. Int. Ed.
2008,
47:
398
4i
Okada S.
Arayama K.
Murayama R.
Ishizuka T.
Hara K.
Hirone N.
Hata T.
Urabe H.
Angew. Chem. Int. Ed.
2008,
47:
6860 ; and references cited therein
5 For a recent example of the 1,6-addition
to related diunsaturated nitrodienes, see: Belot S.
Massaro A.
Tenti A.
Mordini A.
Alexakis A.
Org.
Lett.
2008,
10:
4557
6a
Hayashi T.
Yamamoto S.
Tokunaga N.
Angew. Chem. Int. Ed.
2005,
44:
4224
6b For an intramolecular
version using related pinacol boronate esters, see: Tseng N.-W.
Mancuso J.
Lautens M.
J. Am. Chem. Soc.
2006,
128:
5338
7
De la Herrán G.
Murcia C.
Csákÿ AG.
Org. Lett.
2005,
7:
5629
8 For a related IrI-catalyzed
conjugate addition of boroxines to diunsaturated carbonyl compounds,
see: Nishimura T.
Yasuhara Y.
Hayashi T.
Angew. Chem. Int. Ed.
2006,
45:
5164
9 The synthesis of 1a was
carried out by reaction of diethyl malonate with acrolein (LiBr,
Ac2O) by a literature procedure: Sylla M.
Joseph D.
Chevallier E.
Camara C.
Dumas F.
Synthesis
2006,
1045 ; compound 1b was
prepared similarly using cinnamaldehyde (80%).
10
General Procedure
for the Rh
I
-Catalyzed
Addition of Boronic Acids to 1a with NaHCO
3
as Base (Table 1, Entries 1-7)
To
a mixture of boronic acid (2.0 equiv, 0.32 mmol) and [Rh(cod)Cl]2 (5% Rh,
2.0 mg, 0.004 mmol) under Ar was added a solution of 1a (1.0
equiv, 34 mg, 0.16 mmol) in dioxane-H2O (6:1,
0.5 mL) followed by NaHCO3 (0.1 equiv, 2.7 mg, 0.032
mmol). The mixture was stirred at
50 ˚C for 18
h. Evaporation under vacuum afforded the crude reaction products,
which were purified by column chromatography (hexane-EtOAc,
85:15).
11
General Procedure
for the Rh
I
-Catalyzed
Addition of Boronic Acids to 1a and 2a with Et
3
N as Base (Table
1, Entries 8-15)
To a mixture of boronic
acid (2.0 equiv, 0.32 mmol) and [Rh(cod)Cl]2 (5% Rh,
2.0 mg, 0.004 mmol) under Ar was added a solution of 1a or 2a (1.0 equiv, 0.16 mmol) in dioxane-H2O
(10:1, 0.5 mL) followed by Et3N (1.0 equiv, 16.2 mg,
22 µL, 0.16 mmol). The mixture was stirred at
25 ˚C
for 18 h. Evaporation under vacuum afforded the crude reaction products,
which were purified by column chromatography (hexane-EtOAc,
85:15).
12 We have confirmed that isomerization
of compounds 3 to 4 is
a base-promoted process: treatment of compound (E)-3d in dioxane-H2O (10:1)
with Et3N (1.0 equiv) at r.t. (18 h) afforded 4d (90% isolated yield).
13
General Procedure
for the Rh
I
-Catalyzed
Addition of Boronic Acids to 1b,c and 2b with Ba(OH)
2
as Base (Table
1, Entries 16-19)
To a mixture of boronic
acid (2.0 equiv, 0.34 mmol) and [Rh(cod)2BF4] (5% Rh,
3.5 mg, 0.008 mmol) under Ar was added a solution of 1b or 2b (1.0 equiv, 0.17 mmol) in dioxane-H2O
(10:1, 0.5 mL) followed by Ba(OH)2˙H2O
(1.0 equiv, 32.2 mg, 0.17 mmol). The mixture was stirred at
25 ˚C
for 18 h. Evaporation under vacuum afforded the crude reaction products,
which were purified by column chromatography (hexane-EtOAc,
85:15).
14 Compound 1c was
prepared by cross-metathesis reaction between 1a and
1-octene (5% Grubbs II catalyst, CH2Cl2, r.t.,
18 h, 60% yield).
Reviews:
15a
Yamamoto Y.
Nishikata T.
Miyaura N.
J.
Synth. Org. Chem., Jpn.
2006,
64:
1112
15b
Gutnov A.
Eur.
J. Org. Chem.
2008,
4547
15c
Yamamoto Y.
Nishikata T.
Miyaura N.
Pure
Appl. Chem.
2008,
80:
807 ; and
references cited therein
16
Horiguchi H.
Tsurugi H.
Satoh T.
Miura M.
J. Org. Chem.
2008,
73:
1590
17
General Procedure
for the Pd
²+
-Catalyzed Addition of Boronic Acids to 1a and
2a (Table 2)
To a mixture of Pd(acac)2 (5% Pd,
2,6 mg, 0.008 mmol), 1,2-diphenylphosphinobenzene (dppben, 3.8 mg,
0.008 mmol), Cu(BF4)2˙6H2O
(12 mg, 0.034 mmol), and boronic acid (0.34 mmol) under Ar was added
a solution of the starting material (0.17 mmol) in dioxane-H2O
(10:1, 0.5 mL). The mixture was stirred at 25 ˚C for 18
h. Evaporation under vacuum afforded the crude reaction products,
which were purified by column chromatography (hexane-EtOAc, 95:05).
18
Representative
Data
(
E
)-2-(3-Phenylpropenyl)malonic Acid Diethyl Ester
(3a)
¹H NMR (200 MHz, C6D6): δ = 7.08
(m, 5 H), 5.98 (dd, J = 7.7,
15.3 Hz, 1 H), 5.62 (dt, J = 7.1,
15.2 Hz, 1 H) 4.03 (d, J = 7.9
Hz, 1 H), 3.92 (q, J = 7.2
Hz, 4 H), 3.12 (d, J = 7.1 Hz,
2 H), 0.89 (t, J = 7.2
Hz, 6 H) ppm. ¹³C NMR (50.5 MHz, CDCl3): δ = 168.5,
139.7, 135.3, 128.8, 128.7, 126.4, 123.2, 61.8, 55.8, 39.0, 14.2
ppm.
(
E
)-2-(5-Phenylpenta-1,4-dienyl)malonic Acid Diethyl Ester
(3d)
¹H NMR (300 MHz, C6D6): δ = 7.21
(m, 5 H), 6.35 (d, J = 15.9
Hz, 1 H), 6.18 (dd, J = 8.9,
15.5 Hz, 1 H), 6.09 (dt, J = 6.6,
15.9 Hz, 1 H), 5.68 (dt, J = 6.8,
15.5 Hz, 1 H), 4.22 (d, J = 8.9
Hz, 1 H), 4.05 (q, J = 7.0
Hz, 4 H), 2.79 (m, 2 H), 1.00 (t, J = 7.1
Hz, 6 H) ppm. ¹³C NMR (50.5 MHz, CDCl3): δ = 168.3,
137.4, 134.3, 131.2, 128.5, 127.5, 127.1, 126.1, 122.8, 61.6, 55.6,
35.7, 14.0 ppm.
(
E
)-2-(3,3-Diphenylpropenyl)malonic
Acid Diethyl Ester (3h)
¹H NMR
(200 MHz, CDCl3): δ = 7.20 (m, 5 H),
7.12 (m,
5 H), 6.08 (dd, J = 7.8,
15.7 Hz, 1 H), 5.64 (dd, J = 8.9,
15.7 Hz, 1 H), 4.70 (d, J = 7.7
Hz, 1 H), 4.12 (q, J = 7.3
Hz, 4), 4.02 (d, J = 8.9
Hz, 1 H), 1.18 (t, J = 7.1
Hz, 6 H) ppm.
¹³C NMR (75.5
MHz, CDCl3): δ = 168.7, 143.4, 139.1, 129.0,
128.9, 126.9, 124.0, 52.1, 55.9, 54.1, 14.5 ppm.
2-(3-Phenylpropylidene)malonic Acid Diethyl
Ester (4a)
¹H NMR (200 MHz, CDCl3): δ = 7.21
(m, 5 H), 7.03 (t, J = 7.5
Hz, 1 H), 4.28 (q, J = 7.2
Hz, 2 H), 4.23 (q, J = 7.0 Hz,
2 H), 2.82 (m, 2 H), 2.62 (m, 2 H), 1.31 (t, J = 7.0
Hz,
3 H), 1.28 (t, J = 7.0
Hz, 3 H) ppm. ¹³C NMR (50.5 MHz, CDCl3): δ = 165.4,
164.0, 148.1, 140.5, 132.5, 128.6, 128.3, 126.3, 61.2, 34.4, 31.4,
14.1, 14.07 ppm.
2-(5-Phenylpent-4-enylidene)malonic
Acid Diethyl Ester (4d)
¹H NMR
(200 MHz, CDCl3): δ = 7.28 (m, 5 H),
7.03 (t, J = 7.5
Hz, 1 H), 6.44 (d, J = 15.8
Hz, 1 H), 6.18 (dt, J = 6.6, 15.8
Hz, 1 H), 4.3 (q, J = 7.3
Hz, 2 H), 4.24 (q, J = 7.1
Hz,
2 H), 2.46 (m, 4 H), 1.31 (t, J = 7.2
Hz, 3 H), 1.29 (t, J = 7.2 Hz,
3 H) ppm. ¹³C NMR (50.5 MHz, CDCl3): δ = 165.6, 163.8,
148.2, 137.5, 131.3, 1292, 128.5, 128.4, 127.2, 126.1, 61.3, 31.6,
29.5, 14.1 ppm.