References and Notes
<A NAME="RG36908ST-1">1</A>
Horton DA.
Bourne GT.
Smythe ML.
Chem. Rev.
2003,
103:
893
<A NAME="RG36908ST-2">2</A>
Humphrey GR.
Kuethe JT.
Chem. Rev.
2006,
106:
2875
<A NAME="RG36908ST-3">3</A>
Eicher T.
Hauptmann S.
The
Chemistry of Heterocycles
2nd ed.:
Wiley-VCH;
Weinheim:
2003.
<A NAME="RG36908ST-4">4</A>
Gilchrist TL.
Heterocyclic Chemistry
3rd
ed.:
Addison Wesley Longman;
Harlow:
1997.
<A NAME="RG36908ST-5">5</A>
Joule JA.
Milles K.
Heterocyclic Chemistry
4th
ed.:
Blackwell Science Ltd;
Oxford:
2000.
<A NAME="RG36908ST-6">6</A>
Ackermann L.
Synlett
2007,
507
<A NAME="RG36908ST-7">7</A>
Cacchi S.
Fabrizi G.
Chem. Rev.
2005,
105:
2873
<A NAME="RG36908ST-8">8</A>
Krüger K.
Tillack A.
Beller M.
Adv.
Synth. Catal.
2008,
350:
2153
<A NAME="RG36908ST-9">9</A>
Ackermann L.
Modern Arylation Reactions
Wiley-VCH;
Weinheim:
2009.
Palladium-catalyzed cross-dehydrogenative
arylations can proceed regioselectively at indoles. However, they
display limited selectivities with respect to the coupling partner
and rely on the use of (over)stoichiometric amounts of Cu(OAc)2 or
AgOAc as terminal oxidants:
<A NAME="RG36908ST-10A">10a</A>
Potavathri S.
Dumas AS.
Dwight TA.
Naumiec GR.
Hammann JM.
DeBoef B.
Tetrahedron
Lett.
2008,
49:
4050
<A NAME="RG36908ST-10B">10b</A>
Stuart
DR.
Villemure E.
Fagnou K.
J. Am. Chem. Soc.
2007,
129:
12072
<A NAME="RG36908ST-10C">10c</A>
Dwight TA.
Rue NR.
Charyk D.
Josselyn R.
DeBoef B.
Org. Lett.
2007,
9:
3137
<A NAME="RG36908ST-10D">10d</A>
Stuart DR.
Fagnou K.
Science
2007,
316:
1172 ; and references cited therein
For rhodium-catalyzed direct arylations
of indoles, occurring largely with C-2 regioselectivity, see:
<A NAME="RG36908ST-11A">11a</A>
Yanagisawa S.
Sudo T.
Noyori R.
Itami K.
Tetrahedron
2008,
64:
6073
<A NAME="RG36908ST-11B">11b</A>
Yanagisawa S.
Sudo T.
Noyori R.
Itami K.
J. Am. Chem. Soc.
2006,
128:
11748
<A NAME="RG36908ST-11C">11c</A>
Wang X.
Lane BS.
Sames D.
J.
Am. Chem. Soc.
2005,
127:
4996
<A NAME="RG36908ST-12">12</A> Stoichiometrically magnesiated indoles
were shown to give rise to C-3 arylated indoles:
Lane BS.
Brown MA.
Sames D.
J. Am. Chem. Soc.
2005,
127:
8050
<A NAME="RG36908ST-13">13</A>
de Mendoza P.
Echavarren AM.
In Modern Arylation Methods
Ackermann L.
Wiley-VCH;
Weinheim:
2009.
p.363
<A NAME="RG36908ST-14A">14a</A>
Seregin IV.
Gevorgyan V.
Chem.
Soc. Rev.
2007,
36:
1173
<A NAME="RG36908ST-14B">14b</A>
Alberico D.
Scott ME.
Lautens M.
Chem.
Rev.
2007,
107:
174
Selected recent representative
examples of palladium-catalyzed direct arylations of indoles:
<A NAME="RG36908ST-15A">15a</A>
Lebrasseur N.
Larrosa I.
J. Am. Chem. Soc.
2008,
130:
2926
<A NAME="RG36908ST-15B">15b</A>
Zhao J.
Zhang Y.
Cheng K.
J.
Org. Chem.
2008,
73:
7428
<A NAME="RG36908ST-15C">15c</A>
Yang S.-D.
Sun C.-L.
Fang Z.
Li B.-J.
Li Y.-Z.
Shi Z.-J.
Angew.
Chem. Int. Ed.
2008,
47:
1473
<A NAME="RG36908ST-15D">15d</A>
Bellina F.
Calandri C.
Cauteruccio S.
Rossi R.
Eur. J. Org. Chem.
2007,
2147
<A NAME="RG36908ST-15E">15e</A>
Deprez NR.
Kalyani D.
Krause A.
Sanford MS.
J.
Am. Chem. Soc.
2006,
128:
4972 ;
and references cited therein
<A NAME="RG36908ST-16">16</A> For elegant site-selective copper-catalyzed
direct C-3 arylations of indoles employing [Ar2I]X
as arylating reagents, see:
Phipps RJ.
Grimster NP.
Gaunt MJ.
J. Am. Chem. Soc.
2008,
130:
8172
<A NAME="RG36908ST-17">17</A> For an early example of regioselective
direct arylations of indoles, see:
Akita Y.
Itagaki Y.
Takizawa S.
Ohta A.
Chem. Pharm. Bull.
1989,
37:
1477
<A NAME="RG36908ST-18">18</A>
Ackermann L.
Synthesis
2006,
1557
<A NAME="RG36908ST-19">19</A>
Zhang Z.
Hu Z.
Yu Z.
Lei P.
Chi H.
Wang Y.
He R.
Tetrahedron Lett.
2007,
48:
2415
For the recent use of a heterogenous
palladium catalyst for direct C-3 arylations of 2-substituted indoles,
see:
<A NAME="RG36908ST-20A">20a</A>
Cusati G.
Djakovitch L.
Tetrahedron Lett.
2008,
49:
2499
<A NAME="RG36908ST-20B">20b</A> For a direct C-3 arylation
of a 2-substituted indole, see:
Djakovitch L.
Dufaud V.
Zaidi R.
Adv.
Synth. Catal.
2006,
348:
715
<A NAME="RG36908ST-21">21</A> For a recent report on the application
of PCy3 or Bn(n-Bu)3NCl
to palladium-catalyzed direct C-3 arylations of indoles, including
2-substituted ones, see:
Bellina F.
Benelli F.
Rossi R.
J. Org. Chem.
2008,
73:
5529
<A NAME="RG36908ST-22A">22a</A>
Ackermann L.
Org. Lett.
2005,
7:
439
<A NAME="RG36908ST-22B">22b</A>
Kaspar
LT.
Ackermann L.
Tetrahedron
2005,
61:
11311
<A NAME="RG36908ST-23">23</A>
Ackermann L.
Kaspar LT.
Gschrei CJ.
Chem. Commun.
2004,
2824
<A NAME="RG36908ST-24">24</A>
Ackermann L.
Sandmann R.
Villar A.
Kaspar LT.
Tetrahedron
2008,
64:
769
<A NAME="RG36908ST-25A">25a</A>
Ackermann L.
Born R.
Angew.
Chem. Int. Ed.
2005,
44:
2444
<A NAME="RG36908ST-25B">25b</A>
Ackermann L.
Gschrei CJ.
Althammer A.
Riederer M.
Chem. Commun.
2006,
1419
<A NAME="RG36908ST-25C">25c</A>
Ackermann L.
Spatz JH.
Gschrei CJ.
Born R.
Althammer A.
Angew. Chem. Int. Ed.
2006,
45:
7627
<A NAME="RG36908ST-26">26</A>
Ackermann L.
Org.
Lett.
2005,
7:
3123
<A NAME="RG36908ST-27">27</A>
Ackermann L.
Althammer A.
Born R.
Angew.
Chem. Int. Ed.
2006,
45:
2619
For recent examples of palladium-catalyzed
direct arylations from our laboratories, see:
<A NAME="RG36908ST-28A">28a</A>
Ackermann L.
Althammer A.
Fenner S.
Angew.
Chem. Int. Ed.
2009,
48:
201
<A NAME="RG36908ST-28B">28b</A>
Ackermann L.
Vicente R.
Born R.
Adv.
Synth. Catal.
2008,
350:
741
<A NAME="RG36908ST-28C">28c</A>
Ackermann L.
Althammer A.
Angew. Chem. Int. Ed.
2007,
46:
1627
<A NAME="RG36908ST-29">29</A> Unfortunately, under otherwise
identical reaction conditions catalytic amounts of Bn(n-Bu)3NCl²¹ provided
product 3a with lower isolated yields,
as did the P-para-tolylated phosphonate
derived from HASPO 4h (63%)
Carboxylic acids were used as additives
in palladium- and ruthenium-catalyzed direct arylation reactions,
which are believed to proceed through a concerted metalation-deprotonation
mechanism: [Pd]:
<A NAME="RG36908ST-30A">30a</A>
Lafrance M.
Fagnou K.
J. Am. Chem. Soc.
2006,
128:
16496
<A NAME="RG36908ST-30B">30b</A> [Ru]:
Lafrance M.
Gorelsky SI.
Fagnou K.
J. Am. Chem. Soc.
2007,
129:
14570
<A NAME="RG36908ST-30C">30c</A>
Ackermann L.
Vicente R.
Althammer A.
Org. Lett.
2008,
10:
2299
<A NAME="RG36908ST-30D">30d</A>
Ackermann L.
Mulzer M.
Org. Lett.
2008,
10:
5043 ; and references cited therein
<A NAME="RG36908ST-31">31</A>
Representative
Procedure - Synthesis of 3a (Table 1, Entry 10)
A
suspension of Pd(OAc)2 (5.6 mg, 0.025 mmol, 5.0 mol%) and 4h (28.4 mg, 0.05 mmol, 10 mol%)
in dry dioxane (1 mL) was stirred for 30 min under N2 at
ambient temperature. K2CO3 (207.0 mg, 1.50
mmol), indole (1a, 59.0 mg, 0.50 mmol),
and 4-bromotoluene (2a, 106.0 mg, 0.62
mmol) were added, and the suspension was stirred at 95 ˚C
for 20 h. After the reaction mixture was cooled to ambient temperature, Et2O
(50 mL) and brine (50 mL) were added. The aqueous phase was extracted
with Et2O (2 × 50 mL). The
combined organic layers were dried over Na2SO4 and
concentrated in vacuo. The remaining residue was purified by column chromatography
on SiO2 (n-hexane-EtOAc,
10:1) to yield 3a (97.0 mg, 94%)
as a pale yellow solid; mp 107.4-108.3 ˚C). ¹H
NMR (300 MHz, DMSO-d
6): δ = 11.27
(br s, 1 H), 7.86 (d, J = 7.6
Hz, 1 H), 7.64-7.56 (m, 3 H), 7.47 (d, J = 7.8
Hz, 1 H), 7.24 (d, J = 8.2
Hz, 2 H), 7.19-7.07 (m, 2 H), 2.34 (s, 3 H). ¹³C
NMR (75 MHz, DMSO-d
6): δ = 136.8 (Cq),
134.1 (Cq), 132.9 (Cq), 129.2 (CH), 126.3
(CH), 125.0 (Cq), 122.8 (CH), 121.2 (CH), 119.4 (CH),
118.9 (CH), 115.6 (Cq), 111.8 (CH), 20.6 (CH3).
IR (KBr): 3387, 2361, 2337, 1653, 1617, 1116, 802, 747 cm-¹.
MS (EI): m/z (%) = 207
(100) [M+], 206 (37), 117
(12), 90 (8). ESI-HRMS: m/z calcd
for C15H14N 208.1121: found: 208.1121. The
spectral data are in accordance with those reported in the literature.
[¹9]
<A NAME="RG36908ST-32">32</A>
Analytical Data
Indole 3i: mp 80.3-82.2 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 8.19
(br s, 1 H), 7.62 (t, J = 1.8
Hz, 1 H), 7.53 (dt, J = 7.7,
1.6 Hz, 1 H), 7.39-7.23 (m, 5 H), 6.93 (dd, J = 8.8, 2.4
Hz, 1 H), 3.88 (s, 3 H). ¹³C NMR (126
MHz, CDCl3): δ = 154.9
(Cq), 137.5 (Cq), 134.6 (Cq), 131.7
(Cq), 130.0 (CH), 127.1 (CH), 125.9 (Cq),
125.8 (CH), 125.3 (CH), 123.0 (CH), 116.8 (Cq), 112.7
(CH), 112.2 (CH), 101.5 (CH), 56.0 (CH3). IR (KBr): 3391,
1620, 1594, 1485, 1440, 1271, 1214, 791 cm-¹.
MS (EI): m/z (%) = 257
(100) [M+], 242 (26), 215
(33), 178 (13), 152 (15) 128 (11). ESI-HRMS: m/z calcd
for C15H13ClNO: 258.0680; found: 258.0682.
Indole 3k: mp 134.1-135.8 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 8.07
(br s, 1 H), 7.84 (d, J = 7.9
Hz, 1 H), 7.53-7.50 (m, 2 H), 7.40-7.32 (m, 2
H), 7.18-7.07 (m, 3 H), 2.52 (s, 3 H), 2.46 (s, 3 H). ¹³C
NMR (126 MHz, CDCl3): δ = 138.2
(Cq), 136.1 (Cq), 135.5 (Cq), 128.6
(CH), 128.1 (CH), 126.7 (CH), 125.2 (Cq), 124.5 (CH),
122.8 (CH), 121.4 (CH), 120.4 (Cq), 120.4 (CH), 118.8
(Cq), 117.6 (CH), 21.7 (CH3), 16.6 (CH3). IR
(KBr): 3411, 1653, 1635, 1540, 1457, 1113, 789, 751 cm-¹.
MS (EI): m/z (%) = 221
(100) [M+], 204 (10), 178
(10), 110 (6), 102 (7). ESI-HRMS: m/z calcd
for C16H16N: 222.1277; found: 222.1277.
Indole 3l: mp 113.0-115.2 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 7.92
(br s, 1 H), 7.65 (d, J = 7.4
Hz, 1 H), 7.38-7.28 (m, 4 H), 7.18-7.07 (m, 3
H), 2.50 (s, 3 H), 2.42 (s, 3 H). ¹³C NMR
(126 MHz, CDCl3): δ = 137.9
(Cq), 135.2 (Cq), 135.1 (Cq) 131.2
(Cq), 130.0 (CH), 128.3 (CH), 127.8 (Cq),
126.5 (CH), 126.4 (CH), 121.4 (CH), 119.8 (CH), 118.8 (CH), 114.5
(Cq), 110.2 (CH), 21.7 (CH3), 12.7 (CH3).
IR (KBr): 3392, 1682, 1653, 1559, 1457, 1306, 792, 746 cm-¹.
MS (EI): m/z (%) = 221
(100) [M+], 204 (20), 178
(9), 130 (15), 102 (15). ESI-HRMS: m/z calcd
for C16H16N: 222.1277; found: 222.1272.