Abstract
The antibacterial and antiparasitic activities of free oleanolic acid and its glucosides and glucuronides isolated from marigold (Calendula officinalis) were investigated. The MIC of oleanolic acid and the effect on bacterial growth were estimated by A600 measurements. Oleanolic acid’s influence on bacterial survival and the ability to induce autolysis were measured by counting the number of cfu. Cell morphology and the presence of endospores were observed under electron and light microscopy, respectively. Oleanolic acid inhibited bacterial growth and survival, influenced cell morphology and enhanced the autolysis of Gram-positive bacteria suggesting that bacterial envelopes are the target of its activity. On the other hand, glycosides of oleanolic acid inhibited the development of L3 Heligmosomoides polygyrus larvae, the infective stage of this intestinal parasitic nematode. In addition, both oleanolic acid and its glycosides reduced the rate of L3 survival during prolonged storage, but only oleanolic acid glucuronides affected nematode infectivity. The presented results suggest that oleanolic acid and its glycosides can be considered as potential therapeutic agents.
Abbreviations
A600:absorbance at wavelength 600 nm
cfu:colony forming unit
Gal:galactose
Glc:glucose
Glcl:3-O-monoglucoside of oleanolic acid
GlcOA:other glucosides of oleanolic acid
GlcUA:glucuronic acid
GlcUAOA:oleanolic acid glucuronides
L3:infective larval stage
OA:oleanolic acid
Key words
Calendula officinalis L. - Asteraceae - triterpenoids - oleanolic acid glycosides - antibacterial activity - parasitic nematodes
References
-
1
Anon .
Final report on the safety assessment of Calendula officinalis.
.
Int J Toxicol.
2001;
20
13-20
-
2
Paulsen E.
Contact sensitization from Compositae-containing herbal remedies and cosmetics.
Contact Dermat.
2002;
47
189-98
-
3
Szakiel A, Ruszkowski D, Janiszowska W.
Saponins in Calendula officinalis L. – structure, biosynthesis, transport and biological activity.
Phytochem Rev.
2005;
4
151-8.
-
4
Liu J.
Pharmacology of oleanolic acid and ursolic acid.
J Ethnopharmacol.
1995;
49
57-68
-
5
Marquina S, Maldonado N, Garduno-Ramirez M L, Aranda E, Villareal M L, Navarro V. et al .
Bioactive oleanolic acid saponins and other constituents from the roots of Viguiera decurrens.
.
Phytochemistry.
2001;
56
93-7
-
6
Nishino H, Nishino A, Takayasu J, Hasegawa T, Iwashima A, Hitahahayashi K. et al .
Inhibition of the tumor-promoting action of 12-O-tetradecanoylphorbol 13-acetate by some oleanane-type triterpenoid compounds.
Cancer Res.
1988;
48
5210-5
-
7
Serra C, Lampis G, Pompei R, Pinza M.
Antiviral activity of new triterpene derivaties.
Pharmacol Res.
1994;
29
359-66
-
8
Farina C, Pinza M, Pifferi G.
Synthesis and anti-ulcer activity of new derivatives of glycyrrhetic, oleanolic and ursolic acid.
Il Farmaco.
1998;
53
22-32
-
9
Woldenmichael G M, Singh M P, Maiese W M, Timmermann B N.
Constituents of antimicrobial extract of Caesalpinia paraguarensis Burk.
Z Naturforsch [C].
2003;
58
70-5
-
10
Djoukeng J D, Abou-Mansour E, Tabacchi R, Tapondjou A L, Bouda H, Lontsi D.
Antibacterial triterpenes from Syzygium guineense (Myrtaceae).
J Ethnopharmacol.
2005;
101
283-6
-
11
Jimenez-Arellanes A, Meckes M, Torres J, Luna-Herrera J.
Antibacterial triterpenoids from Lantana hispida (Verbenaceae).
J Ethonopharmacol.
2007;
111
202-5
-
12
Kozai K, Suzuki J, Okada M, Nagasaka N.
Effect of oleanolic acid-cyclodextrin inclusion compounds on dental caries by in vitro experiment in rat-caries model.
Microbios.
1999;
97
179-88
-
13
Ren D, Zuo R, Barrios A FG, Bedzyk L A, Eldrige G R, Pasmore M E. et al .
Differential gene expression for investigation of Escherichia coli biofilm inhibition by plant extract ursolic acid.
Appl Environ Microbiol.
2005;
71
4022-34
-
14
Waller P J.
Anthelminthic resistance.
Vet Parasitol.
1997;
72
391-412
-
15
Pérez M P, Navas-Cortés J A, Pascual-Villalobos M J, Castillo P.
Nematicidal activity of essential oils and organic amendments from Asteraceae against root-knot nematodes.
Plant Pathol.
2003;
52
395-401
-
16
Monroy F G, Enriguez F J.
Heligmosomoides polygyrus: a model for chronic gastrointestinal helminthiasis.
Parasitol Today.
1992;
8
49-54.
-
17 Hoagland D R, Aron D I. The water culture method for plants without soil. Circular 374. Berkeley; Agricultural Experimental Station, University of California 1950
-
18 Miller J H. Experiments in molecular genetics. Cold Spring Harbor; Cold Spring Harbor Lab Press 1972: 433
-
19 Sulston J, Hodgkin J. Methods. In: Wood WB, editor The nematode Caenorhabditis elegans
. Cold Spring Harbor; Cold Spring Harbor Lab Press 1988: 587-606
-
20
Morlot C, Pernot L, LeGouellec A, DiGulimi A M, Vernet T, Dideberg O. et al .
Crystal structure of a peptydoglycan regulatory factor (PBP3) from Streptococcus pneumoniae.
.
J Biol Chem.
2004;
280
15 984-91
-
21
den Blaauwen T, Aarsman M EG, Vischer N OE, Nanniga N.
Penicillin-binding protein PBP2 of Escherichia coli localizes preferentially in the lateral wall and at mid-cell in comparison with the old cell pole.
Mol Microbiol.
2003;
47
539-47
-
22
Zhao W H, Hu Z Q, Okubo S, Hara Y, Shimamura T.
Mechanism of synergy between epigallocatechin gallate and β-lactams against methicillin-resistant Staphylococcus aureus.
Antimicrob Agents Chemother.
2001;
45
1737-42
-
23
Walencka E, Rozalska S, Wysokinska H, Rozalski M, Kuzma L, Rozalska B.
Salvipisone and aethiopinone from Salvia sclarea hairy roots modulate staphylococcal antibiotic resistance and express anti-biofilm activity.
Planta Med.
2007;
73
545-51
-
24 Plotkin M J. Ethnomedicine past and present. In: Baba S, Akerele O, Kawaguchi Y, editors Natural resources and human health plants of medicinal and nutritional value. Amsterdam; Elsevier 1992: 79-86
Dr. Anna Szakiel
Institute of Biochemistry
Department of Plant Biochemistry
University of Warsaw
ul. Miecznikowa 1
02–096 Warszawa
Poland
Telefon: +48-22-554 3316
Fax: +48-22-554 3221
eMail: szakal@biol.uw.edu.pl