Subscribe to RSS
DOI: 10.1055/s-0028-1102988
© Georg Thieme Verlag Stuttgart · New York
Konservative Therapie bei Hirnödem – welche Wege führen nach Rom?
Medical treatment of brain edema – which way is leading to Rome?Publication History
Publication Date:
28 October 2008 (online)
Zusammenfassung
Bei Patienten mit Hirnödem muss die Pathophysiologie der unterschiedlichen Formen des Hirnödems berücksichtigt werden, um die auch heute noch eingeschränkten Behandlungsmöglichkeiten unverzüglich, sinnvoll und konsequent einsetzen zu können. Man unterscheidet 2 Arten von Hirnödemen, das zytotoxische und das vasogene Hirnödem, die in unterschiedlicher Ausprägung nebeneinander bei einem Patienten auftreten können. Oberkörper–Hochlagerung, Hyperventilation, osmotisch aktive Substanzen oder eine gezielte Senkung des Hirnstoffwechsels durch Sedierung oder Hypothermie sollten unter Überwachung von ICP und Blutdruck erfolgen. Möglicherweise führt eine Berücksichtigung der individuellen Autoregulationsmöglichkeiten in der Zukunft zu einem effektiveren Einsatz der dargestellten Behandlungsprinzipien. Die weitere Erforschung der Aquaporine kann neue Wege eröffnen, die Entstehung und die Mobilisation eines Hirnödems zu beeinflussen.
Abstract:
In patients with brain edema the pathophysiology of the different forms of edema have to be considered to ensure the prompt, sensible and consistent use of the limited treatment modalities available. Brain edema may be classified into cytotoxic and vasogenic edema, these two types often coexist in one patient. Head elevation, hyperventilation, osmotic therapy and reduction of brain metabolism by sedation or hypothermia should be used closely monitoring ICP and blood pressure. In the future considering the autoregulatory capacity of the individual patient will possibly lead to a more effective action of the treatment modalities described. Further research will open new perspectives how aquaporines are involved in the genesis and mobilisation of brain edema.
Schlüsselwörter:
Hirnödem - zerebrale Autoregulation - Mannitol - Hypothermie - Aquaporine - Hyperventilation
Keywords:
brain edema - cerebral autoregulation - mannitol - hypothermia - aquaporine - hyperventilation
Kernaussagen
-
Das zytotoxische Ödem ist definiert als Ansammlung von Flüssigkeit im Inneren der Zelle, die häufigste Ursache hierfür ist eine zerebrale Ischämie. Das vasogene Ödem entsteht durch eine Öffnung der Blut–Hirn–Schranke.
-
Beim Schädel–Hirn–Trauma ist das Ödem zunächst überwiegend zytotoxischer Natur – ein vasogenes Ödem spielt erst nach 24 bis 48h eine Rolle.
-
Nach intrazerebraler Blutung ist die Aktivierung der Gerinnungskaskade (neben Raumforderung und osmotischen Effekten) für die Entstehung eines Ödems von entscheidender Bedeutung.
-
Nach Subarachnoidalblutung entsteht durch die Ischämie ein zytotoxisches Ödem. Als Ursache wird eine vorübergehende globale Ischämie verbunden mit einem initialen Bewusstseinsverlust diskutiert.
-
Aquaporin 4 ist impliziert sowohl bei der Entstehung eines zytotoxischen Ödems als auch beim Ausschwemmen eines vasogenen Ödems. Eine Beeinflussung der Aquaporine würde einen neuen Ansatz zur Hirnödemtherapie darstellen, der die bisherigen Therapiemodule sinnvoll ergänzen könnte.
-
Eine routinemäßige Oberkörper–Hochlagerung kann ohne entsprechendes Monitoring nicht empfohlen werden.
-
Die durch eine unkritisch angewendete, prophylaktische Hyperventilation induzierte zerebrale Vasokonstriktion kann Ischämien verursachen.
-
Mannitol wird meist zur kurzfristigen Hirndrucksenkung bei diagnostischen Maßnahmen (CT) oder operativen Eingriffen (Hämatomausräumung) eingesetzt.
-
Hypertone Lösungen konnten erfolgreich bei mannitolrefraktären Hirndruckanstiegen eingesetzt werden, es gibt derzeit aber keine allgemeingültige Dosisempfehlung.
-
Eine Hypovolämie ist beim Einsatz von osmotisch wirksamen Substanzen unbedingt zu vermeiden.
-
Die moderate Hypothermie (33–35°C) ist eine erwiesenermaßen wirksame Methode zur Senkung erhöhter Hirndrücke. Ob durch sie das Outcome der Patienten verbessert wird, ist derzeit noch unklar. Unabhängig davon sind sich alle Experten einig, dass Hyperthermie bei Schädel–Hirn–Verletzten, Reanimierten oder Schlaganfallpatienten unbedingt zu vermeiden ist.
-
Das Haupteinsatzgebiet der Barbiturate ist die maximale Reduzierung des Hirnstoffwechsels mit zerebraler Vasokonstriktion zur Beherrschung einer Hirndruckkrise nachdem alle anderen Maßnahmen bereits ausgeschöpft sind.
-
Dexametheson und andere Steroide sollten, außer bei Tumoren und Hirnabszessen, nicht zur Standardtherapie des Hirnödems eingesetzt werden.
-
Die aktuellen Leitlinien der Brain–Trauma–Foundation geben ein Klasse–II–Empfehlung, CPP–Werte über 70 mmHg unbedingt zu vermeiden.
-
Die unkritische Anwendung von Katecholaminen zur Steigerung des CPP kann bei Patienten mit aufgehobener zerebraler Autoregulation die Ödembildung verstärken.
-
Ergänzendes Material
- Supporting Information_Literature
Literatur
- 1 Levin HS, Eisenberg HM, Gary HE. et al. . Intracranial hypertension in relation to memory functioning during the first year after severe head injury. Neurosurgery. 1991; 28 196-200
- 2 Eisenberg HM, Gary Jr HE, Aldrich EF. et al. . Initial CT findings in 753 patients with severe head injury. A report from the NIH Traumatic Coma Data Bank. J Neurosurg. 1990; 73 688-698
- 3 Barzo P, Marmarou A, Fatouros P. et al. . Pathophysiological response of vasogenic and cellular edema in traumatic brain swelling. Acta Neurochir Suppl. 1997; 70 119-122
- 4 Barzo P, Marmarou A, Fatouros P. et al. . Contribution of vasogenic and cellular edema to traumatic brain swelling measured by diffusion–weighted imaging. J Neurosurg. 1997; 87 900-907
- 5 Marmarou A.. A review of progress in understanding the pathophysiology and treatment of brain edema. Neurosurg Focus. 2007; 22
- 6 Ito J, Marmarou A, Barzo P. et al. . Characterization of edema by diffusion–weighted imaging in experimental traumatic brain injury. J Neurosurg. 1996; 84 97-103
- 7 Unterberg AW, Stover J, Kress B. et al. . Edema and brain trauma. Neuroscience. 2004; 129 1021-1029
- 8 Kawamata T, Katayama Y, Aoyama N. et al. . Heterogeneous mechanisms of early edema formation in cerebral contusion: diffusion MRI and ADC mapping study. Acta Neurochir Suppl. 2000; 76 9-12
- 9 Kawamata T, Mori T, Sato S. et al. . Tissue hyperosmolality and brain edema in cerebral contusion. Neurosurg Focus. 2007; 22
- 10 Katayama Y, Kawamata T.. Edema fluid accumulation within necrotic brain tissue as a cause of the mass effect of cerebral contusion in head trauma patient. Acta Neurochir Suppl. 2003; 86 323-327
- 11 Rincon F, Mayer SA.. Novel therapies for intracerebral hemorrhage. Current Opinion in Critical Care. 2004; 10 94-100
- 12 Xi G, Keep RF, Hoff JT.. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006; 5 53-63
- 13 Claassen J, Carhuapoma JR, Kreiter KT. et al. . Global cerebral edema after subarachnoid hemorrhage: frequency, predictors, and impact on outcome. Stroke. 2002; 33 1225-1232
- 14 Mocco J, Prickett CS, Komotar RJ. et al. . Potential mechanisms and clinical significance of global cerebral edema following aneurysmal subarachnoid hemorrhage. Neurosurg Focus. 2007; 22
- 15 Stummer W.. Mechanisms of tumor–related brain edema. Neurosurg Focus. 2007; 22
- 16 Criscuolo GR.. The genesis of peritumoral vasogenic brain edema and tumor cysts, a hypothetical role for tumor–derived vascular permeability factor. Yale J Biol Med. 1993; 66 277-314
- 17 Kalkanis SN, Carroll RS, Zhang J. et al. . Correlation of vascular endothelial growth factor messenger RNA expression with peritumoral vasogenic cerebral edema in meningiomas. J Neurosurg. 1996; 85 1095-1101
- 18 Badaut J, Brunet JF, Regli L.. Aquaporins in the brain: from aqueduct to ”multi–duct„. Metab Brain Dis. 2007; 22 251-263
- 19 Manley GT, Binder DK, Papadopoulos MC. et al. . New insights into water transport and edema in the central nervous system from phenotype analysis of aquaporin–4 null mice. Neuroscience. 2004; 129 983-991
- 20 Papadopoulos MC, Saadoun S, Binder DK. et al. . Molecular mechanisms of brain tumor edema. Neuroscience. 2004; 129 1011-1020
- 21 Tomas–Camardiel M, Venero JL, Herrera AJ. et al. . Blood–brain barrier disruption highly induces aquaporin–4 mRNA and protein in perivascular and parenchymal astrocytes: protective effect by estradiol treatment in ovariectomized animals. J Neurosci Res. 2005; 80 235-246
- 22 Zhao J, Moore AN, Clifton GL. et al. . Sulforaphane enhances aquaporin–4 expression and decreases cerebral edema following traumatic brain injury. J Neurosci Res. 2005; 82 499-506
- 23 Ke C, Poon WS, Ng HK. et al. . Heterogeneous responses of aquaporin–4 in edema formation in a replicated severe traumatic brain injury model in rats. Neurosci Lett. 2001; 301 21-24
- 24 Ke C, Poon WS, Ng HK. et al. . Impact of experimental acute hyponatremia on severe traumatic brain injury in rats: influences on injuries, permeability of blood–brain barrier, ultrastructural features, and aquaporin–4 expression. Exp Neurol. 2002; 178 194-206
- 25 Kiening KL, van Landeghem FK, Schreiber S. et al. . Decreased hemispheric aquaporin–4 is linked to evolving brain edema following controlled cortical impact injury in rats. Neurosci Lett. 2002; 324 105-108
- 26 Treggiari MM, Schutz N, Yanez ND. et al. . Role of intracranial pressure values and patterns in predicting outcome in traumatic brain injury: a systematic review. Neurocrit Care. 2007; 6 104
- 27 Steiner LA., Andrews PJ.. Monitoring the injured brain: ICP and CBF. British Journal of Anaesthesia. 2006; 97 26-38
- 28 Brain Trauma Foundation . Guidelines for the management of severe traumatic brain injury. J Neurotrauma. 2007; 24 1-106
- 29 Stiefel MF, Udoftuk JD, Spiotta AM. et al. . Conventional neurocritical care and cerebral oxygenation after traumatic brain injury. J Neurosurg. 2006; 105 568-575
- 30 Durward QJ, Amacher AL, Del Maestro RF. et al. . Cerebral and cardiovascular responses to changes in head elevation in patients with intracranial hypertension. J Neurosurg. 1983; 59 938-944
- 31 Feldman Z, Kanter NJ, Robertson CS. et al. . Effect of head elevation on intracranial pressure, cerebral perfusion pressure, and cerebral blood flow in head–injured patients. J Neurosurg. 1992; 76 207-11
- 32 Muizelaar JP, Marmarou A, Ward JD. et al. . Adverse effects of prolonged hyperventilation in patients with severe head injury: A randomized clinical trial. J Neurosurg. 1991; 75 731-739
- 33 Diringer MN, Videen TO, Yundt al K et. Regional cerebrovascular and metabolic effects of hyperventilation after severe traumatic brain injury. J Neurosurg. 2002; 96 103-108
- 34 Coles JP, Fryer TD, Coleman MR. et al. . Hyperventilation following head injury: Effect on ischemic burden and cerebral oxidative metabolism. Crit Care Med. 2007; 35 568-578
- 35 Wakai A, Roberts I, Schierhout G.. Mannitol for acute traumatic brain injury. Cochrane Database Syst Rev.. 2007; 24
- 36 Himmelseher S.. Hypertonic saline solutions for treatment of intracranial hypertension. Curr Opin Anaesthesiol. 2007; 20 414-26
- 37 Horn P, Munch E, Vajkoczy P. et al. . Hypertonic saline solution for control of elevated intracranial pressure in patients with exhausted response to mannitol and barbiturates. Neurol Res. 1999; 21 758-764
- 38 Schwarz S, Georgiadis D, Aschoff A. et al. . Effects of hypertonic (10 %) saline in patients with raised intracranial pressure after stroke. Stroke. 2002; 33 136-140
- 39 Vialet R, Albanese J, Thomachot L. et al. . Isovolume hypertonic solutes (sodium chloride or mannitol) in the treatment of refractory posttraumatic intracranial hypertension: 2 mL/kg 7.5 % saline is more effective than 2 mL/kg 20 % mannitol. Crit Care Med. 2003; 31 1683-1687
- 40 Wade CE, Grady JJ, Kramer GC. et al. . Individual patient cohort analysis of the efficacy of hypertonic saline/dextran in patients with traumatic brain injury and hypotension. J Trauma. 1997; 42
- 41 Schwarz S, Schwab S, Bertram M. et al. . Effects of hypertonic saline hydroxyethyl starch solution and mannitol in patients with increased intracranial pressure after stroke. Stroke. 1998; 29 1550-1555
- 42 Ogden AT, Mayer SA, Connolly Jr. ES. Hyperosmolar agents in neurosurgical practice: the evolving role of hypertonic saline. Neurosurgery. 2005; 57 207-15
- 43 Suarez JI, Qureshi AI, Parekh PD. et al. . Administration of hypertonic (3 %) sodium chloride/acetate with symptomatic vasospasm following subarachnoid hemorrhage. J Neurosurg Anesthesiol. 1999; 11 178-184
- 44 Tseng MY, Al–Rawi PG, Pickard JD. et al. . Effect of hypertonic saline on cerebral blood flow in poor–grade patients with subarachnoid hemorrhage. Stroke. 2003; 34 1389-1396
- 45 White H, Cook D, Venkatesh B.. The Use of Hypertonic Saline for Treating Intracranial Hypertension After Traumatic Brain Injury. Anesth Analg. 2006; 102 1836-46
- 46 Polderman KH, Joe RTT, Peerdeman SM. et al. . Effects of therapeutic hypothermia on intracranial pressure and outcome in patients with severe head injury. Intensive Care Med. 2002; 28 1563-1573
- 47 Jiang JY, Xu W, Li W. et al. . Effect of long–term mild hypothermia or short–term mild hypothermia on outcome of patients with severe traumatic brain injury. Journal of Cerebral Blood Flow & Metabolism. 2006; 26 771-776
- 48 Polderman KH.. Application of therapeutic hypothermia in the intensive care unit Opportunities and pitfalls of a promising treatment modality, Part 2: Practical aspects and side effects. Intensive Care Med. 2004; 30 757-769
- 49 Polderman KH.. Application of therapeutic hypothermia in the intensive care unit Opportunities and pitfalls of a promising treatment modality, Part 1: Indications and evidence. Intensive Care Med. 2004; 30 556-575
- 50 McIntyre LA, Fergusson DA, Hebert PC. et al. . Prolonged therapeutic hypothermia after traumatic brain injury in adults: a systematic review. JAMA. 2003; 289 2992-2999
- 51 Alderson P, Gadkary C, Signorini DF.. Therapeutic hypothermia for head injury. Cochrane Database Syst Rev. 2004; 18
- 52 Clifton GL, Miller ER, Choi SC. et al. . Lack of effect of induction of hypothermia after acute brain injury. N Engl J Med. 2001; 344 556-563
- 53 Clifton GL, Choi SC, Miller ER. et al. . Intercenter variance in clinical trials of head trauma–experience of the National Acute Brain Injury Study:hypothermia. J Neurosurg. 2001; 95 751-755
- 54 Diringer MN, Reaven NL, Funk SE. et al. . Elevated body temperature independently contributes to increased length of stay in neurologic intensive care unit patients. Crit Care Med. 2004; 32 1489-1495
- 55 Geffroy A, Bronchard R, Merckx P. et al. . Severe traumatic head injury in adults: Which patients are at risk of early hyperthermia?. Intensive Care Med. 2004; 30 785-790
- 56 Hypothermia After Cardiac Arrest Study Group. . Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002; 346 549-556
- 57 Grände PO.. The "Lund Concept" for the treatment of severe head trauma – physiological principles and clinical application. Intensive Care Med. 2006; 32 1475-84
- 58 Rea GL, Rockswold GL.. Barbiturate therapy in uncontrolled intracranial hypertension. Neurosurgery. 1983; 12 401-404
- 59 Eisenberg HM, Frankowski RF, Contant CF. et al. . High–dose barbiturate control of elevated intracranial pressure in patients with severe head injury. J Neurosurg. 1988; 69 15-23
- 60 Cormio M, Gopinath S, Valadka A. et al. . Cerebral hemodynamic effects of pentobarbital coma in head–injured patients. J Neurotrauma. 1999; 16 927-936
- 61 Schwartz ML, Tator CH, Rowed DW. et al. . The University of Toronto head injury treatment study: a prospective, randomized comparison of pentobarbital and mannitol. Can J Neurol Sci. 1984; 11 434-440
- 62 Ward JD, Becker DP, Miller JD. et al. . Failure of prophylactic barbiturate coma in the treatment of severe head injury. J Neurosurg. 1985; 62 383-388
- 63 Schalen W, Sonesson B, Messeter K. et al. . Clinical outcome and cognitive impairment in patients with severe head injuries treated with barbiturate coma. Acta Neurochir (Wien). 1992; 117 153-159
- 64 Schwab S, Spranger M, Schwarz S. et al. . Barbiturate coma in severe hemispheric stroke: useful or obsolete?. Neurology. 1997; 48 1608-1613
- 65 Fishman RA.. Brain edema. N Engl J Med. 1975; 293 706-711
- 66 Anderson DC, Cranford RE.. Corticosteroids in ischemic stroke. Stroke. 1979; 10 68-71
- 67 Pourgvarin H, Bhoopat TW, Viriyavejakul A. et al. . Effects of dexamethasone in primary supratentorial intracerebral hemorrhage. N Engl J Med. 1987; 316 1229-1233
- 68 Cooper PR, Moody S, Clark WK. et al. . Dexamethasone and severe head injury: a prospective double–blind trial. J Neurosurg. 1979; 51 307-331
- 69 Sinha S, Bastin ME, Wardlaw JM. et al. . Effects of dexamethasone on peritumoural oedematous brain: a DT–MRI study. J Neurol Neurosurg Psychiatry. 2004; 75 1632-1635
- 70 Andersen C, Jensen FT.. Differences in blood–tumour–barrier leakage of human intracranial tumours: quantitative monitoring of vasogenic oedema and its response to glucocorticoid treatment. Acta Neurochir. 1998; 140 919-924
- 71 Vincent JL, Berré J.. Primer on medical management of severe brain injury. Crit Care Med 2005: 1392-1399
- 72 Raslan A, Bharewaj.. A Medical management of cerebral edema. Neurosurg Focus. 2007; 22 1-12
- 73 Mayer SA, Chong JY.. Critical care management of increased intracranial pressure. J Intensive Care Med. 2002; 17 55-67
- 74 Chesnut RM.. Avoidance of hypotension: conditio sine qua non of successful severe head injury management. J Trauma. 1997; 42 4-9
- 75 Pietropaoli JA, Rogers FB, Shackford SA.. The deleterious effects of intraoperative hypotension on outcome in patients with severe head injuries. J Trauma. 1992; 33 403-407
- 76 Rosner MJ, Rosner SD, Johnson AH.. Cerebral perfusion pressure: management protocol and clinical results. J Neurosurg. 1995; 83 949-962
- 77 Lang EW, Lagopoulos J, Griffith J. et al. . Cerebral vasomotor reactivity testing in head injury: the link between pressure and flow. J Neurol Neurosurg Psychiatry. 2003; 74 1053-1059
- 78 Robertson CS, Valadka AB, Hannay HJ. et al. . Prevention of secondary insults after severe head injury. Crit Care Med. 1999; 27 2086-2095
- 79 Contant F, Valadka SP AB. Gopinath. et al. . Adult respiratory distress syndrome: a complication of induced hypertension after severe head injury. J Neurosurg. 2001; 95 560-568
- 80 Asgeirsson B, Grände PO, Nordström CH.. A new therapy of post–trauma brain edema based on haemodynamic principles for brain volume regulation. Intensive Care Med. 1994; 20 260-267
- 81 Eker C, Asgeirsson B, Grände PO. et al. . Improved outcome after severe head injury with a new therapy based on principles for brain volume regulation and preserved microcirculation. Crit Care Med. 1998; 26 1881-1886
- 82 Naredi S, Olivecrona M, Lindgren C. et al. . An outcome study of severe traumatic head injury using the ”Lund therapy” with low–dose prostacyclin. Acta Anaesthesiol Scand. 2001; 45 402-406
- 83 Nordström CH, Reinstrup P, Xu W. et al. . Assessment of the lower limit for cerebral perfusion pressure in severe head injuries by bedside monitoring of regional energy metabolism. Anesthesiology. 2003; 98 809-814
- 84 Ståhl N, Ungerstedt U, Nordström CH.. Brain energy metabolism during controlled reduction of cerebral perfusion pressure in severe head injuries. Intensive Care Med. 2001; 27 1215-1223
- 85 Zoremba N, Schnoor J, Berens M. et al. . Metabolism During a Decrease in Cerebral Perfusion Pressure Caused by an Elevated Intracranial Pressure in the Porcine Neocortex. Anesth Analg. 2007; 105 744-50
- 86 Chambers I, Treadwell R, Mendelow AD.. Determination of threshold levels of cerebral perfusion pressure and intracranial pressure in severe head injury by using receiveroperating characteristic curves: an observational study in 291 patients. J Neurosurg. 2001; 94 412-416
- 87 Qureshi AI, Wilson DA, Hanley DF. et al. . Pharmacologic reduction of mean arterial pressure does not adversely affect regional cerebral blood flow and intracranial pressure in experimental intracerebral hemorrhage. Crit Care Med. 1999; 27 965-971
- 88 Schütz C, Stover JF, Thompson HJ. et al. . Acute, transient hemorrhagic hypotension does not aggravate structural damage or neurologic motor deficits but delays the long–term cognitive recovery following mild to moderate traumatic brain injury. Crit Care Med. 2006; 34 492-501
- 89 Czosnyka M, Smielewski P, Kirkpatrick P. et al. . Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997; 41 11-19
- 90 Lavinio A, Timofeev I, Nortje J. et al. . Cerebrovascular reactivity during hypothermia and rewarming. British Journal of Anaesthesia. 2007; 99 237-44
- 91 Steiner LA, Coles JP, Johnston al. AJ e. Assessment of cerebrovascular autoregulation in head–injured patients. A validation study. Stroke. 2003; 34 2404-2409
- 92 Howells T, Elf K, Jones PA. et al. . Pressure reactivity as a guide in the treatment of cerebral perfusion pressure in patients with brain trauma. J Neurosurg. 2005; 102 311-317
- 93 Innerklinische Akutversorgung des Patienten mit Schädel–Hirn–Trauma Empfehlungen des Wissenschaftlichen Arbeitskreises Neuroanästhesie der DGAI. Anästh. Intensivmed. 1998; 39 399-412
- 94 Jaeger M, Schuhmann MU, Soehle M. et al. . Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Crit Care Med. 2006; 34 1783-1788
Prof. Dr. med. Ralf Scherer
Email: r.scherer@clemenshospital.de
- Literaturverzeichnis