Subscribe to RSS
DOI: 10.1055/s-0028-1108011
The Role of Growth Factors and Cytokines during Implantation: Endocrine and Paracrine Interactions
Publication History
Publication Date:
05 February 2009 (online)
ABSTRACT
Implantation, a critical step for establishing pregnancy, requires molecular and cellular events resulting in uterine growth and differentiation, blastocyst adhesion, invasion, and placental formation. Successful implantation requires a receptive endometrium, a normal and functional embryo at the blastocyst stage, and a synchronized dialogue between maternal and embryonic tissues. In addition to the well-characterized role of sex steroids, the complexity of embryo implantation and placentation is exemplified by the number of cytokines and growth factors with demonstrated roles in these processes. Disturbances in the normal expression and action of these cytokines result in an absolute or partial failure of implantation and abnormal placental formation in mice and human. Members of the gp130 cytokine family, interleukin-11 (IL-11) and leukemia inhibitory factor, the transforming growth factor beta superfamily, the colony-stimulating factors, and the IL-1 and IL-15 systems are crucial molecules for a successful implantation. Chemokines are also important, both in recruiting specific cohorts of leukocytes to the implantation site and in trophoblast trafficking and differentiation. This review provides discussion of the embryonic and uterine factors that are involved in the process of implantation in autocrine, paracrine, and/or juxtacrine manners at the hormonal, cellular, and molecular levels.
KEYWORDS
Blastocyst - endometrium - implantation - pregnancy - uterine biology
REFERENCES
- 1 Tazuke S I, Giudice L C. Growth factors and cytokines in endometrium, embryonic development, and maternal:embryonic interactions. Semin Reprod Endocrinol. 1996; 14 231-245
- 2 Carson D D, Bagchi I, Dey S K et al.. Embryo implantation. Dev Biol. 2000; 223 217-237
- 3 Ogita H, Takai Y. Cross-talk among integrin, cadherin, and growth factor receptor: roles of nectin and nectin-like molecule. Int Rev Cytol. 2008; 265 1-54
- 4 O'Hayre M, Salanga C L, Handel T M, Allen S J. Chemokines and cancer: migration, intracellular signalling and intercellular communication in the microenvironment. Biochem J. 2008; 409 635-649
- 5 Dey S K, Lim H, Das S K et al.. Molecular cues to implantation. Endocr Rev. 2004; 25 341-373
- 6 Makrigiannakis A, Minas V, Kalantaridou S N, Nikas G, Chrousos G P. Hormonal and cytokine regulation of early implantation. Trends Endocrinol Metab. 2006; 17 178-185
- 7 Metcalf D. Hematopoietic cytokines. Blood. 2008; 111 485-491
- 8 Whitman M, Melton D A. Growth factors in early embryogenesis. Annu Rev Cell Biol. 1989; 5 93-117
- 9 Duc-Goiran P, Mignot T M, Bourgeois C, Ferre F. Embryo-maternal interactions at the implantation site: a delicate equilibrium. Eur J Obstet Gynecol Reprod Biol. 1999; 83 85-100
- 10 Makrigiannakis A, Minas V. Mechanisms of implantation. Reprod Biomed Online. 2007; 14 102-109
- 11 Red-Horse K, Zhou Y, Genbacev O et al.. Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J Clin Invest. 2004; 114 744-754
- 12 Wilcox A J, Weinberg C R, O'Connor J F et al.. Incidence of early loss of pregnancy. N Engl J Med. 1988; 319 189-194
- 13 Norwitz E R, Schust D J, Fisher S J. Implantation and the survival of early pregnancy. N Engl J Med. 2001; 345 1400-1408
- 14 Simon C, Caballero-Campo P, Garcia-Velasco J A, Pellicer A. Potential implications of chemokines in reproductive function: an attractive idea. J Reprod Immunol. 1998; 38 169-193
- 15 Taylor E, Gomel V. The uterus and fertility. Fertil Steril. 2008; 89 1-16
- 16 Braude P, Bolton V, Moore S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature. 1988; 332 459-461
- 17 Flach G, Johnson M H, Braude P R, Taylor R A, Bolton V N. The transition from maternal to embryonic control in the 2-cell mouse embryo. EMBO J. 1982; 1 681-686
- 18 Richter J D. Cytoplasmic polyadenylation in development and beyond. Microbiol Mol Biol Rev. 1999; 63 446-456
- 19 Yamanaka Y, Ralston A, Stephenson R O, Rossant J. Cell and molecular regulation of the mouse blastocyst. Dev Dyn. 2006; 235 2301-2314
- 20 Kodaman P H, Taylor H S. Hormonal regulation of implantation. Obstet Gynecol Clin North Am. 2004; 31 745-766
- 21 Lunghi L, Ferretti M E, Medici S, Biondi C, Vesce F. Control of human trophoblast function. Reprod Biol Endocrinol. 2007; 5 6
- 22 Johnson M H, McConnell J M. Lineage allocation and cell polarity during mouse embryogenesis. Semin Cell Dev Biol. 2004; 15 583-597
- 23 Takaoka K, Yamamoto M, Shiratori H et al.. The mouse embryo autonomously acquires anterior-posterior polarity at implantation. Dev Cell. 2006; 10 451-459
- 24 Tabin C J. The key to left-right asymmetry. Cell. 2006; 127 27-32
- 25 Tabibzadeh S, Shea W, Lessey B A, Broome J. From endometrial receptivity to infertility. Semin Reprod Endocrinol. 1999; 17 197-203
- 26 Simmons D G, Cross J C. Determinants of trophoblast lineage and cell subtype specification in the mouse placenta. Dev Biol. 2005; 284 12-24
- 27 Strowitzki T, Germeyer A, Popovici R, von Wolff M. The human endometrium as a fertility-determining factor. Hum Reprod Update. 2006; 12 617-630
- 28 Kayisli U A, Guzeloglu-Kayisli O, Arici A. Endocrine-immune interactions in human endometrium. Ann N Y Acad Sci. 2004; 1034 50-63
- 29 Aplin J D. Embryo implantation: the molecular mechanism remains elusive. Reprod Biomed Online. 2006; 13 833-839
- 30 Armant D R, Wang J, Liu Z. Intracellular signaling in the developing blastocyst as a consequence of the maternal-embryonic dialogue. Semin Reprod Med. 2000; 18 273-287
- 31 Tabibzadeh S, Babaknia A. The signals and molecular pathways involved in implantation, a symbiotic interaction between blastocyst and endometrium involving adhesion and tissue invasion. Hum Reprod. 1995; 10 1579-1602
- 32 Sharkey A M, Smith S K. The endometrium as a cause of implantation failure. Best Pract Res Clin Obstet Gynaecol. 2003; 17 289-307
- 33 Nikas G. Endometrial receptivity: changes in cell-surface morphology. Semin Reprod Med. 2000; 18 229-235
- 34 Kao L C, Tulac S, Lobo S et al.. Global gene profiling in human endometrium during the window of implantation. Endocrinology. 2002; 143 2119-2138
- 35 Sherwin J R, Sharkey A M, Cameo P et al.. Identification of novel genes regulated by chorionic gonadotropin in baboon endometrium during the window of implantation. Endocrinology. 2007; 148 618-626
- 36 Enders A C. Trophoblast-uterine interactions in the first days of implantation: models for the study of implantation events in the human. Semin Reprod Med. 2000; 18 255-263
- 37 Lessey B A, Palomino W A, Apparao K B, Young S L, Lininger R A. Estrogen receptor-alpha (ER-alpha) and defects in uterine receptivity in women. Reprod Biol Endocrinol. 2006; 4(suppl 1) S9
- 38 Achache H, Revel A. Endometrial receptivity markers, the journey to successful embryo implantation. Hum Reprod Update. 2006; 12 731-746
- 39 Huet-Hudson Y M, Dey S K. Requirement for progesterone priming and its long-term effects on implantation in the mouse. Proc Soc Exp Biol Med. 1990; 193 259-263
- 40 Carpenter K D, Korach K S. Potential biological functions emerging from the different estrogen receptors. Ann N Y Acad Sci. 2006; 1092 361-373
- 41 Hewitt S C, Korach K S. Progesterone action and responses in the alphaERKO mouse. Steroids. 2000; 65 551-557
- 42 Cooke P S, Buchanan D L, Young P et al.. Stromal estrogen receptors mediate mitogenic effects of estradiol on uterine epithelium. Proc Natl Acad Sci U S A. 1997; 94 6535-6540
- 43 Curtis S W, Clark J, Myers P, Korach K S. Disruption of estrogen signaling does not prevent progesterone action in the estrogen receptor alpha knockout mouse uterus. Proc Natl Acad Sci U S A. 1999; 96 3646-3651
- 44 Paria B C, Tan J, Lubahn D B, Dey S K, Das S K. Uterine decidual response occurs in estrogen receptor-alpha-deficient mice. Endocrinology. 1999; 140 2704-2710
- 45 Conneely O M, Jericevic B M. Progesterone regulation of reproductive function through functionally distinct progesterone receptor isoforms. Rev Endocr Metab Disord. 2002; 3 201-209
- 46 Nelson K G, Takahashi T, Bossert N L, Walmer D K, McLachlan J A. Epidermal growth factor replaces estrogen in the stimulation of female genital-tract growth and differentiation. Proc Natl Acad Sci U S A. 1991; 88 21-25
- 47 Ignar-Trowbridge D M, Nelson K G, Bidwell M C et al.. Coupling of dual signaling pathways: epidermal growth factor action involves the estrogen receptor. Proc Natl Acad Sci U S A. 1992; 89 4658-4662
- 48 Johnson D C, Chatterjee S. Epidermal growth factor (EGF) replaces estradiol for the initiation of embryo implantation in the hypophysectomized rat. Placenta. 1993; 14 429-438
- 49 Perrier d'Hauterive S, Berndt S, Tsampalas M et al.. Dialogue between blastocyst hCG and endometrial LH/hCG receptor: which role in implantation?. Gynecol Obstet Invest. 2007; 64 156-160
- 50 Licht P, Russu V, Wildt L. On the role of human chorionic gonadotropin (hCG) in the embryo-endometrial microenvironment: implications for differentiation and implantation. Semin Reprod Med. 2001; 19 37-47
- 51 Zygmunt M, Hahn D, Munstedt K, Bischof P, Lang U. Invasion of cytotrophoblastic JEG-3 cells is stimulated by hCG in vitro. Placenta. 1998; 19 587-593
- 52 Milwidsky A, Finci-Yeheskel Z, Yagel S, Mayer M. Gonadotropin-mediated inhibition of proteolytic enzymes produced by human trophoblast in culture. J Clin Endocrinol Metab. 1993; 76 1101-1105
- 53 Yagel S, Geva T E, Solomon H et al.. High levels of human chorionic gonadotropin retard first trimester trophoblast invasion in vitro by decreasing urokinase plasminogen activator and collagenase activities. J Clin Endocrinol Metab. 1993; 77 1506-1511
- 54 Simón C, Martin J C, Pellicer A. Paracrine regulators of implantation. Baillieres Best Pract Res Clin Obstet Gynaecol. 2000; 14 815-826
- 55 Laird S M, Tuckerman E M, Li T C. Cytokine expression in the endometrium of women with implantation failure and recurrent miscarriage. Reprod Biomed Online. 2006; 13 13-23
- 56 Duval D, Reinhardt B, Kedinger C, Boeuf H. Role of suppressors of cytokine signaling (Socs) in leukemia inhibitory factor (LIF)-dependent embryonic stem cell survival. FASEB J. 2000; 14 1577-1584
- 57 Arici A, Engin O, Attar E, Olive D L. Modulation of leukemia inhibitory factor gene expression and protein biosynthesis in human endometrium. J Clin Endocrinol Metab. 1995; 80 1908-1915
- 58 Charnock-Jones D S, Sharkey A M, Fenwick P, Smith S K. Leukaemia inhibitory factor mRNA concentration peaks in human endometrium at the time of implantation and the blastocyst contains mRNA for the receptor at this time. J Reprod Fertil. 1994; 101 421-426
- 59 Aghajanova L, Stavreus-Evers A, Nikas Y, Hovatta O, Landgren B M. Coexpression of pinopodes and leukemia inhibitory factor, as well as its receptor, in human endometrium. Fertil Steril. 2003; 79(Suppl 1) 808-814
- 60 Cullinan E B, Abbondanzo S J, Anderson P S, Pollard J W, Lessey B A, Stewart C L. Leukemia inhibitory factor (LIF) and LIF receptor expression in human endometrium suggests a potential autocrine/paracrine function in regulating embryo implantation. Proc Natl Acad Sci U S A. 1996; 93 3115-3120
- 61 Vogiagis D, Marsh M M, Fry R C, Salamonsen L A. Leukaemia inhibitory factor in human endometrium throughout the menstrual cycle. J Endocrinol. 1996; 148 95-102
- 62 Sharkey A M, King A, Clark D E et al.. Localization of leukemia inhibitory factor and its receptor in human placenta throughout pregnancy. Biol Reprod. 1999; 60 355-364
- 63 Lessey B A, Gui Y, Apparao K B, Young S L, Mulholland J. Regulated expression of heparin-binding EGF-like growth factor (HB-EGF) in the human endometrium: a potential paracrine role during implantation. Mol Reprod Dev. 2002; 62 446-455
- 64 Song H, Lim H, Das S K, Paria B C, Dey S K. Dysregulation of EGF family of growth factors and COX-2 in the uterus during the preattachment and attachment reactions of the blastocyst with the luminal epithelium correlates with implantation failure in LIF-deficient mice. Mol Endocrinol. 2000; 14 1147-1161
- 65 Laird S M, Tuckerman E M, Dalton C F, Dunphy B C, Li T C, Zhang X. The production of leukaemia inhibitory factor by human endometrium: presence in uterine flushings and production by cells in culture. Hum Reprod. 1997; 12 569-574
- 66 Ledee-Bataille N, Lapree-Delage G, Taupin J L, Dubanchet S, Frydman R, Chaouat G. Concentration of leukaemia inhibitory factor (LIF) in uterine flushing fluid is highly predictive of embryo implantation. Hum Reprod. 2002; 17 213-218
- 67 Giess R, Tanasescu I, Steck T, Sendtner M. Leukaemia inhibitory factor gene mutations in infertile women. Mol Hum Reprod. 1999; 5 581-586
- 68 Steck T, Giess R, Suetterlin M W et al.. Leukaemia inhibitory factor (LIF) gene mutations in women with unexplained infertility and recurrent failure of implantation after IVF and embryo transfer. Eur J Obstet Gynecol Reprod Biol. 2004; 112 69-73
- 69 Escary J L, Perreau J, Dumenil D, Ezine S, Brulet P. Leukaemia inhibitory factor is necessary for maintenance of haematopoietic stem cells and thymocyte stimulation. Nature. 1993; 363 361-364
- 70 Stewart C L, Kaspar P, Brunet L J et al.. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature. 1992; 359 76-79
- 71 Dunglison G F, Barlow D H, Sargent I L. Leukaemia inhibitory factor significantly enhances the blastocyst formation rates of human embryos cultured in serum-free medium. Hum Reprod. 1996; 11 191-196
- 72 Nichols J, Davidson D, Taga T, Yoshida K, Chambers I, Smith A. Complementary tissue-specific expression of LIF and LIF-receptor mRNAs in early mouse embryogenesis. Mech Dev. 1996; 57 123-131
- 73 Ware C B, Horowitz M C, Renshaw B R et al.. Targeted disruption of the low-affinity leukemia inhibitory factor receptor gene causes placental, skeletal, neural and metabolic defects and results in perinatal death. Development. 1995; 121 1283-1299
- 74 Yoshida K, Taga T, Saito M et al.. Targeted disruption of gp130, a common signal transducer for the interleukin 6 family of cytokines, leads to myocardial and hematological disorders. Proc Natl Acad Sci U S A. 1996; 93 407-411
- 75 Sharkey A M, Dellow K, Blayney M, Macnamee M, Charnock-Jones S, Smith S K. Stage-specific expression of cytokine and receptor messenger ribonucleic acids in human preimplantation embryos. Biol Reprod. 1995; 53 974-981
- 76 Sherwin J R, Smith S K, Wilson A, Sharkey A M. Soluble gp130 is up-regulated in the implantation window and shows altered secretion in patients with primary unexplained infertility. J Clin Endocrinol Metab. 2002; 87 3953-3960
- 77 Gearing D P, Thut C J, VandeBos T et al.. Leukemia inhibitory factor receptor is structurally related to the IL-6 signal transducer, gp130. EMBO J. 1991; 10 2839-2848
- 78 Robertson S A, O'Connell A, Ramsey A. The effect of interleukin-6 deficiency on implantation, fetal development and parturition in mice. Proc Aust Soc Reprod Biol. 2000; 31 97
- 79 Nasu K, Matsui N, Narahara H, Tanaka Y, Miyakawa I. Effects of interferon-gamma on cytokine production by endometrial stromal cells. Hum Reprod. 1998; 13 2598-2601
- 80 Jauniaux E, Gulbis B, Schandene L, Collette J, Hustin J. Distribution of interleukin-6 in maternal and embryonic tissues during the first trimester. Mol Hum Reprod. 1996; 2 239-243
- 81 Stephanou A, Myatt L, Eis A L, Sarlis N, Jikihara H, Handwerger S. Ontogeny of the expression and regulation of interleukin-6 (IL-6) and IL-1 mRNAs by human trophoblast cells during differentiation in vitro. J Endocrinol. 1995; 147 487-496
- 82 Jasper M J, Tremellen K P, Robertson S A. Reduced expression of IL-6 and IL-1alpha mRNAs in secretory phase endometrium of women with recurrent miscarriage. J Reprod Immunol. 2007; 73 74-84
- 83 Du X X, Williams D A. Interleukin-11: a multifunctional growth factor derived from the hematopoietic microenvironment. Blood. 1994; 83 2023-2030
- 84 Sands B E, Bank S, Sninsky C A et al.. Preliminary evaluation of safety and activity of recombinant human interleukin 11 in patients with active Crohn's disease. Gastroenterology. 1999; 117 58-64
- 85 Cork B A, Li T C, Warren M A, Laird S M. Interleukin-11 (IL-11) in human endometrium: expression throughout the menstrual cycle and the effects of cytokines on endometrial IL-11 production in vitro. J Reprod Immunol. 2001; 50 3-17
- 86 Dimitriadis E, Salamonsen L A, Robb L. Expression of interleukin-11 during the human menstrual cycle: coincidence with stromal cell decidualization and relationship to leukaemia inhibitory factor and prolactin. Mol Hum Reprod. 2000; 6 907-914
- 87 von Rango U, Alfer J, Kertschanska S et al.. Interleukin-11 expression: its significance in eutopic and ectopic human implantation. Mol Hum Reprod. 2004; 10 783-792
- 88 Chen H F, Lin C Y, Chao K H, Wu M Y, Yang Y S, Ho H N. Defective production of interleukin-11 by decidua and chorionic villi in human anembryonic pregnancy. J Clin Endocrinol Metab. 2002; 87 2320-2328
- 89 Cork B A, Tuckerman E M, Li T C, Laird S M. Expression of interleukin (IL)-11 receptor by the human endometrium in vivo and effects of IL-11, IL-6 and LIF on the production of MMP and cytokines by human endometrial cells in vitro. Mol Hum Reprod. 2002; 8 841-848
- 90 Dimitriadis E, Robb L, Salamonsen L A. Interleukin 11 advances progesterone-induced decidualization of human endometrial stromal cells. Mol Hum Reprod. 2002; 8 636-643
- 91 Popovici R M, Kao L C, Giudice L C. Discovery of new inducible genes in in vitro decidualized human endometrial stromal cells using microarray technology. Endocrinology. 2000; 141 3510-3513
- 92 Tierney E P, Tulac S, Huang S T, Giudice L C. Activation of the protein kinase A pathway in human endometrial stromal cells reveals sequential categorical gene regulation. Physiol Genomics. 2003; 16 47-66
- 93 Ain R, Trinh M L, Soares M J. Interleukin-11 signaling is required for the differentiation of natural killer cells at the maternal-fetal interface. Dev Dyn. 2004; 231 700-708
- 94 Kang J, Der S D. Cytokine functions in the formative stages of a lymphocyte's life. Curr Opin Immunol. 2004; 16 180-190
- 95 Eriksson M, Meadows S K, Wira C R, Sentman C L. Unique phenotype of human uterine NK cells and their regulation by endogenous TGF-beta. J Leukoc Biol. 2004; 76 667-675
- 96 Verma S, Hiby S E, Loke Y W, King A. Human decidual natural killer cells express the receptor for and respond to the cytokine interleukin 15. Biol Reprod. 2000; 62 959-968
- 97 Kitaya K, Nakayama T, Okubo T, Kuroboshi H, Fushiki S, Honjo H. Expression of macrophage inflammatory protein-1beta in human endometrium: its role in endometrial recruitment of natural killer cells. J Clin Endocrinol Metab. 2003; 88 1809-1814
- 98 Ashkar A A, Black G P, Wei Q et al.. Assessment of requirements for IL-15 and IFN regulatory factors in uterine NK cell differentiation and function during pregnancy. J Immunol. 2003; 171 2937-2944
- 99 Dunn C L, Critchley H O, Kelly R W. IL-15 regulation in human endometrial stromal cells. J Clin Endocrinol Metab. 2002; 87 1898-1901
- 100 Bankers-Fulbright J L, Kalli K R, McKean D J. Interleukin-1 signal transduction. Life Sci. 1996; 59 61-83
- 101 Svenson M, Hansen M B, Heegaard P, Abell K, Bendtzen K. Specific binding of interleukin 1 (IL-1) beta and IL-1 receptor antagonist (IL-1ra) to human serum. High-affinity binding of IL-1ra to soluble IL-1 receptor type I. Cytokine. 1993; 5 427-435
- 102 Bischof P, Campana A. Molecular mediators of implantation. Baillieres Best Pract Res Clin Obstet Gynaecol. 2000; 14 801-814
- 103 Vigano P, Mangioni S, Pompei F, Chiodo I. Maternal-conceptus cross talk—a review. Placenta. 2003; 24(Suppl B) S56-S61
- 104 Hofmann G E, Scott Jr R T, Bergh P A, Deligdisch L. Immunohistochemical localization of epidermal growth factor in human endometrium, decidua, and placenta. J Clin Endocrinol Metab. 1991; 73 882-887
- 105 Bass K E, Morrish D, Roth I et al.. Human cytotrophoblast invasion is up-regulated by epidermal growth factor: evidence that paracrine factors modify this process. Dev Biol. 1994; 164 550-561
- 106 Li R H, Zhuang L Z. The effects of growth factors on human normal placental cytotrophoblast cell proliferation. Hum Reprod. 1997; 12 830-834
- 107 Kamei Y, Tsutsumi O, Kuwabara Y, Taketani Y. Intrauterine growth retardation and fetal losses are caused by epidermal growth factor deficiency in mice. Am J Physiol. 1993; 264 R597-R600
- 108 Tsutsumi O, Oka T. Epidermal growth factor deficiency during pregnancy causes abortion in mice. Am J Obstet Gynecol. 1987; 156 241-244
- 109 Johnson D C, Banerjee S, Chatterjee S. Estradiol and chlordecone (Kepone) decrease adenosine 3′5'-cyclic monophosphate concentrations in the ovariectomized immature rat uterus. Proc Soc Exp Biol Med. 1995; 210 33-38
- 110 Threadgill D W, Dlugosz A A, Hansen L A et al.. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science. 1995; 269 230-234
- 111 De La Fuente R, O'Brien M J, Eppig J J. Epidermal growth factor enhances preimplantation developmental competence of maturing mouse oocytes. Hum Reprod. 1999; 14 3060-3068
- 112 Goldman S, Gonen Y. Monoclonal antibodies against epidermal growth factor prevent outgrowth of mouse embryos in vitro. Hum Reprod. 1998; 13 2231-2233
- 113 Harvey M B, Leco K J, Arcellana-Panlilio M Y, Zhang X, Edwards D R, Schultz G A. Proteinase expression in early mouse embryos is regulated by leukaemia inhibitory factor and epidermal growth factor. Development. 1995; 121 1005-1014
- 114 Khamsi F, Armstrong D T, Zhang X. Expression of urokinase-type plasminogen activator in human preimplantation embryos. Mol Hum Reprod. 1996; 2 273-276
- 115 Wiley L M, Wu J X, Harari I, Adamson E D. Epidermal growth factor receptor mRNA and protein increase after the four-cell preimplantation stage in murine development. Dev Biol. 1992; 149 247-260
- 116 Lim H, Das S K, Dey S K. erbB genes in the mouse uterus: cell-specific signaling by epidermal growth factor (EGF) family of growth factors during implantation. Dev Biol. 1998; 204 97-110
- 117 Surveyor G A, Gendler S J, Pemberton L et al.. Expression and steroid hormonal control of Muc-1 in the mouse uterus. Endocrinology. 1995; 136 3639-3647
- 118 Das S K, Chakraborty I, Paria B C, Wang X N, Plowman G, Dey S K. Amphiregulin is an implantation-specific and progesterone-regulated gene in the mouse uterus. Mol Endocrinol. 1995; 9 691-705
- 119 Das S K, Das N, Wang J et al.. Expression of betacellulin and epiregulin genes in the mouse uterus temporally by the blastocyst solely at the site of its apposition is coincident with the “window” of implantation. Dev Biol. 1997; 190 178-190
- 120 Leach R E, Khalifa R, Ramirez N D et al.. Multiple roles for heparin-binding epidermal growth factor-like growth factor are suggested by its cell-specific expression during the human endometrial cycle and early placentation. J Clin Endocrinol Metab. 1999; 84 3355-3363
- 121 Yoo H J, Barlow D H, Mardon H J. Temporal and spatial regulation of expression of heparin-binding epidermal growth factor-like growth factor in the human endometrium: a possible role in blastocyst implantation. Dev Genet. 1997; 21 102-108
- 122 Martin K L, Barlow D H, Sargent I L. Heparin-binding epidermal growth factor significantly improves human blastocyst development and hatching in serum-free medium. Hum Reprod. 1998; 13 1645-1652
- 123 Chobotova K, Spyropoulou I, Carver J et al.. Heparin-binding epidermal growth factor and its receptor ErbB4 mediate implantation of the human blastocyst. Mech Dev. 2002; 119 137-144
- 124 Tabibzadeh S, Hemmati-Brivanlou A. Lefty at the crossroads of “stemness” and differentiative events. Stem Cells. 2006; 24 1998-2006
- 125 Feinberg R F, Kliman H J, Wang C L. Transforming growth factor-beta stimulates trophoblast oncofetal fibronectin synthesis in vitro: implications for trophoblast implantation in vivo. J Clin Endocrinol Metab. 1994; 78 1241-1248
- 126 Tamada H, McMaster M T, Flanders K C, Andrews G K, Dey S K. Cell type-specific expression of transforming growth factor-beta 1 in the mouse uterus during the periimplantation period. Mol Endocrinol. 1990; 4 965-972
- 127 Mazella J, Tang M, Tseng L. Disparate effects of relaxin and TGFbeta1: relaxin increases, but TGFbeta1 inhibits, the relaxin receptor and the production of IGFBP-1 in human endometrial stromal/decidual cells. Hum Reprod. 2004; 19 1513-1518
- 128 Kulkarni A B, Karlsson S. Transforming growth factor-beta 1 knockout mice. A mutation in one cytokine gene causes a dramatic inflammatory disease. Am J Pathol. 1993; 143 3-9
- 129 Graham C H, Connelly I, MacDougall J R, Kerbel R S, Stetler-Stevenson W G, Lala P K. Resistance of malignant trophoblast cells to both the anti-proliferative and anti-invasive effects of transforming growth factor-beta. Exp Cell Res. 1994; 214 93-99
- 130 Caniggia I, Winter J, Lye S J, Post M. Oxygen and placental development during the first trimester: implications for the pathophysiology of pre-eclampsia. Placenta. 2000; 21(suppl A) S25-S30
- 131 Djurovic S, Schjetlein R, Wisloff F, Haugen G, Husby H, Berg K. Plasma concentrations of Lp(a) lipoprotein and TGF-beta1 are altered in preeclampsia. Clin Genet. 1997; 52 371-376
- 132 Hamilton G S, Lysiak J J, Han V K, Lala P K. Autocrine-paracrine regulation of human trophoblast invasiveness by insulin-like growth factor (IGF)-II and IGF-binding protein (IGFBP)-1. Exp Cell Res. 1998; 244 147-156
- 133 Irving J A, Lala P K. Functional role of cell surface integrins on human trophoblast cell migration: regulation by TGF-beta, IGF-II, and IGFBP-1. Exp Cell Res. 1995; 217 419-427
- 134 Irwin J C, de las Fuentes L, Dsupin B A, Giudice L C. Insulin-like growth factor regulation of human endometrial stromal cell function: coordinate effects on insulin-like growth factor binding protein-1, cell proliferation and prolactin secretion. Regul Pept. 1993; 48(1–2) 165-177
- 135 Fowler D J, Nicolaides K H, Miell J P. Insulin-like growth factor binding protein-1 (IGFBP-1): a multifunctional role in the human female reproductive tract. Hum Reprod Update. 2000; 6 495-504
- 136 Han V K, Bassett N, Walton J, Challis J R. The expression of insulin-like growth factor (IGF) and IGF-binding protein (IGFBP) genes in the human placenta and membranes: evidence for IGF-IGFBP interactions at the feto-maternal interface. J Clin Endocrinol Metab. 1996; 81(7) 2680-2693
- 137 Makarevich A V, Markkula M. Apoptosis and cell proliferation potential of bovine embryos stimulated with insulin-like growth factor I during in vitro maturation and culture. Biol Reprod. 2002; 66 386-392
- 138 Kolle S, Stojkovic M, Boie G, Wolf E, Sinowatz F. Growth hormone-related effects on apoptosis, mitosis, and expression of connexin 43 in bovine in vitro maturation cumulus-oocyte complexes. Biol Reprod. 2003; 68 1584-1589
- 139 Spanos S, Becker D L, Winston R M, Hardy K. Anti-apoptotic action of insulin-like growth factor-I during human preimplantation embryo development. Biol Reprod. 2000; 63 1413-1420
- 140 Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev. 2004; 25 581-611
- 141 Maglione D, Guerriero V, Viglietto G et al.. Two alternative mRNAs coding for the angiogenic factor, placenta growth factor (PlGF), are transcribed from a single gene of chromosome 14. Oncogene. 1993; 8 925-931
- 142 Olofsson B, Korpelainen E, Pepper M S et al.. Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proc Natl Acad Sci U S A. 1998; 95 11709-11714
- 143 Joukov V, Sorsa T, Kumar V et al.. Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J. 1997; 16 3898-3911
- 144 Achen M G, Jeltsch M, Kukk E et al.. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci U S A. 1998; 95 548-553
- 145 Cunningham S A, Tran T M, Arrate M P, Brock T A. Characterization of vascular endothelial cell growth factor interactions with the kinase insert domain-containing receptor tyrosine kinase. A real time kinetic study. J Biol Chem. 1999; 274 18421-18427
- 146 Park J E, Chen H H, Winer J, Houck K A, Ferrara N. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J Biol Chem. 1994; 269 25646-25654
- 147 Vuorela P, Hatva E, Lymboussaki A et al.. Expression of vascular endothelial growth factor and placenta growth factor in human placenta. Biol Reprod. 1997; 56 489-494
- 148 Rabbani M L, Rogers P A. Role of vascular endothelial growth factor in endometrial vascular events before implantation in rats. Reproduction. 2001; 122 85-90
- 149 Rockwell L C, Pillai S, Olson C E, Koos R D. Inhibition of vascular endothelial growth factor/vascular permeability factor action blocks estrogen-induced uterine edema and implantation in rodents. Biol Reprod. 2002; 67 1804-1810
- 150 Nayak N R, Brenner R M. Vascular proliferation and vascular endothelial growth factor expression in the rhesus macaque endometrium. J Clin Endocrinol Metab. 2002; 87 1845-1855
- 151 Shifren J L, Tseng J F, Zaloudek C J et al.. Ovarian steroid regulation of vascular endothelial growth factor in the human endometrium: implications for angiogenesis during the menstrual cycle and in the pathogenesis of endometriosis. J Clin Endocrinol Metab. 1996; 81 3112-3118
- 152 Greb R R, Heikinheimo O, Williams R F, Hodgen G D, Goodman A L. Vascular endothelial growth factor in primate endometrium is regulated by oestrogen-receptor and progesterone-receptor ligands in vivo. Hum Reprod. 1997; 12 1280-1292
- 153 Ancelin M, Buteau-Lozano H, Meduri G et al.. A dynamic shift of VEGF isoforms with a transient and selective progesterone-induced expression of VEGF189 regulates angiogenesis and vascular permeability in human uterus. Proc Natl Acad Sci U S A. 2002; 99 6023-6028
- 154 Charnock-Jones D S, Sharkey A M, Rajput-Williams J et al.. Identification and localization of alternately spliced mRNAs for vascular endothelial growth factor in human uterus and estrogen regulation in endometrial carcinoma cell lines. Biol Reprod. 1993; 48 1120-1128
- 155 Krussel J S, Casan E M, Raga F et al.. Expression of mRNA for vascular endothelial growth factor transmembraneous receptors Flt1 and KDR, and the soluble receptor sflt in cycling human endometrium. Mol Hum Reprod. 1999; 5 452-458
- 156 Hornung D, Lebovic D I, Shifren J L, Vigne J L, Taylor R N. Vectorial secretion of vascular endothelial growth factor by polarized human endometrial epithelial cells. Fertil Steril. 1998; 69 909-915
- 157 Ghosh D, Kumar P G, Sengupta J. Effect of early luteal phase administration of mifepristone (RU486) on leukaemia inhibitory factor, transforming growth factor beta and vascular endothelial growth factor in the implantation stage endometrium of the rhesus monkey. J Endocrinol. 1998; 157 115-125
- 158 Ghosh D, Sharkey A M, Charnock-Jones D S et al.. Expression of vascular endothelial growth factor (VEGF) and placental growth factor (PlGF) in conceptus and endometrium during implantation in the rhesus monkey. Mol Hum Reprod. 2000; 6 935-941
- 159 Sengupta J, Lalitkumar P G, Najwa A R et al.. Immunoneutralization of vascular endothelial growth factor inhibits pregnancy establishment in the rhesus monkey (Macaca mulatta). Reproduction. 2007; 133 1199-1211
- 160 Lessey B A, Castelbaum A J. Integrins and implantation in the human. Rev Endocr Metab Disord. 2002; 3 107-117
- 161 Acosta A A, Elberger L, Borghi M et al.. Endometrial dating and determination of the window of implantation in healthy fertile women. Fertil Steril. 2000; 73 788-798
- 162 Gonzalez R R, Palomino A, Boric A, Vega M, Devoto L. A quantitative evaluation of alpha1, alpha4, alphaV and beta3 endometrial integrins of fertile and unexplained infertile women during the menstrual cycle. A flow cytometric appraisal. Hum Reprod. 1999; 14 2485-2492
- 163 Aplin J D. Adhesion molecules in implantation. Rev Reprod. 1997; 2 84-93
- 164 Somkuti S G, Yuan L, Fritz M A, Lessey B A. Epidermal growth factor and sex steroids dynamically regulate a marker of endometrial receptivity in Ishikawa cells. J Clin Endocrinol Metab. 1997; 82 2192-2197
- 165 Lessey B A. Two pathways of progesterone action in the human endometrium: implications for implantation and contraception. Steroids. 2003; 68 809-815
- 166 Curry Jr T E, Osteen K G. The matrix metalloproteinase system: changes, regulation, and impact throughout the ovarian and uterine reproductive cycle. Endocr Rev. 2003; 24 428-465
- 167 Alexander C M, Hansell E J, Behrendtsen O et al.. Expression and function of matrix metalloproteinases and their inhibitors at the maternal-embryonic boundary during mouse embryo implantation. Development. 1996; 122 1723-1736
- 168 Rinkenberger J L, Cross J C, Werb Z. Molecular genetics of implantation in the mouse. Dev Genet. 1997; 21 6-20
- 169 Vu T H, Werb Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev. 2000; 14 2123-2133
- 170 Anteby E Y, Greenfield C, Natanson-Yaron S et al.. Vascular endothelial growth factor, epidermal growth factor and fibroblast growth factor-4 and -10 stimulate trophoblast plasminogen activator system and metalloproteinase-9. Mol Hum Reprod. 2004; 10 229-235
- 171 Taylor H S, Vanden Heuvel G B, Igarashi P. A conserved Hox axis in the mouse and human female reproductive system: late establishment and persistent adult expression of the Hoxa cluster genes. Biol Reprod. 1997; 57 1338-1345
- 172 Vitiello D, Kodaman P H, Taylor H S. HOX genes in implantation. Semin Reprod Med. 2007; 25 431-436
- 173 Krumlauf R. Hox genes in vertebrate development. Cell. 1994; 78 191-201
- 174 Benson G V, Lim H, Paria B C, Satokata I, Dey S K, Maas R L. Mechanisms of reduced fertility in Hoxa-10 mutant mice: uterine homeosis and loss of maternal Hoxa-10 expression. Development. 1996; 122 2687-2696
- 175 Taylor H S, Arici A, Olive D, Igarashi P. HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium. J Clin Invest. 1998; 101 1379-1384
- 176 Lim H, Ma L, Ma W G, Maas R L, Dey S K. Hoxa-10 regulates uterine stromal cell responsiveness to progesterone during implantation and decidualization in the mouse. Mol Endocrinol. 1999; 13 1005-1017
- 177 Daftary G S, Taylor H S. Molecular markers of implantation: clinical implications. Curr Opin Obstet Gynecol. 2001; 13 269-274
- 178 Accili D, Arden K C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell. 2004; 117 421-426
- 179 Christian M, Zhang X, Schneider-Merck T et al.. Cyclic AMP-induced forkhead transcription factor, FKHR, cooperates with CCAAT/enhancer-binding protein beta in differentiating human endometrial stromal cells. J Biol Chem. 2002; 277 20825-20832
- 180 Dijkers P F, Medema R H, Pals C et al.. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol Cell Biol. 2000; 20 9138-9148
- 181 Sunters A, Fernandez de Mattos S, Stahl M et al.. FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J Biol Chem. 2003; 278 49795-49805
- 182 Labied S, Kajihara T, Madureira P A et al.. Progestins regulate the expression and activity of the forkhead transcription factor FOXO1 in differentiating human endometrium. Mol Endocrinol. 2006; 20(1) 35-44
- 183 Chatzaki E, Makrigiannakis A, Margioris A N, Kouimtzoglou E, Gravanis A. The Fas/FasL apoptotic pathway is involved in kappa-opioid-induced apoptosis of human endometrial stromal cells. Mol Hum Reprod. 2001; 7 867-874
- 184 Takeda K, Noguchi K, Shi W et al.. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci U S A. 1997; 94 3801-3804
- 185 Cheng J G, Chen J R, Hernandez L, Alvord W G, Stewart C L. Dual control of LIF expression and LIF receptor function regulate Stat3 activation at the onset of uterine receptivity and embryo implantation. Proc Natl Acad Sci U S A. 2001; 98 8680-8685
- 186 Salamonsen L A. Crosstalk between progesterone and interleukin-11 signal transduction pathways in human endometrial stromal cells during decidualization. Reprod Fertil Dev. 2003; 15 73
- 187 Underhill-Day N, McGovern L A, Karpovich N, Mardon H J, Barton V A, Heath J K. Functional characterization of W147A: a high-affinity interleukin-11 antagonist. Endocrinology. 2003; 144 3406-3414
- 188 Dimitriadis E, Robb L, Liu Y X et al.. IL-11 and IL-11Ralpha immunolocalisation at primate implantation sites supports a role for IL-11 in placentation and fetal development. Reprod Biol Endocrinol. 2003; 1 34
- 189 Corvinus F M, Fitzgerald J S, Friedrich K, Markert U R. Evidence for a correlation between trophoblast invasiveness and STAT3 activity. Am J Reprod Immunol. 2003; 50 316-321
- 190 Kirchhof N, Carnwath J W, Lemme E, Anastassiadis K, Schöler H, Niemann H. Expression pattern of Oct-4 in preimplantation embryos of different species. Biol Reprod. 2000; 63(6) 1698-1705
- 191 Avilion A A, Nicolis S K, Pevny L H, Perez L, Vivian L, Lovell-Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 2003; 17(1) 126-140
- 192 Mitsui K, Tokuzawa Y, Itoh H et al.. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell. 2003; 113(5) 631-642
- 193 Niwa H, Toyooka Y, Shimosato D et al.. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell. 2005; 123(5) 917-929
- 194 Hsieh-Li H M, Witte D P, Weinstein M et al.. Hoxa 11 structure, extensive antisense transcription, and function in male and female fertility. Development. 1995; 121(5) 1373-1385
- 195 Harris H A. Estrogen receptor-beta: recent lessons from in vivo studies. Mol Endocrinol. 2007; (1) 1-13
- 196 Mulac-Jericevic B, Mullinax R A, DeMayo F J, Lydon J P, Conneely O M. Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform. Science. 2000; 289(5485) 1751-1754
- 197 Mulac-Jericevic B, Lydon J P, DeMayo F J, Conneely O M. Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform. Proc Natl Acad Sci U S A. 2003; 100(17) 9744-9749
- 198 Lydon J P, DeMayo F J, Funk C R et al.. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev. 1995; 9(18) 2266-2278
Hugh S TaylorM.D.
Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine
333 Cedar Street, New Haven, CT 06520-8063
Email: hugh.taylor@yale.edu