Zusammenfassung
Ziel: Evaluation der Präzision von in selektiver Lasersinterung-Technik (SLS-Technik) gefertigten
kraniofazialen 3-D-Modellen aus Mehrzeilencomputertomografie-Daten (MZCT-Daten). Material und Methoden: Insgesamt 19 3-D-Modelle wurden mittels MZCT gescannt, vermessen und mit den Patienten-CT-Daten,
die dem Modellbau zugrunde lagen, und der Handvermessung des 3-D-Modells verglichen.
Zur Vermessung wurden insgesamt 15 anatomische Landmarken und 20 Messstrecken definiert.
Ergebnisse: Sowohl im Vergleich der Messstrecken der Patienten-CT-Daten zu den Modell-CT-Daten
als auch zwischen Patienten-CT-Daten und Handvermessung des 3-D-Modells als auch zwischen
Modell-CT-Daten und Handvermessung des 3-D-Modells ergaben sich keine statistisch
signifikanten Unterschiede (p < 0,05). Die Mittelwerte der Unterschiede in den einzelnen
Messstrecken lagen alle zwischen 0,5455 und -0,3214 mm. In keiner anatomischen Region
war eine tendenzielle Ungenauigkeit nachweisbar. Schlussfolgerung: Lasersintermodelle zeigen eine hohe Genauigkeit, die durch die hohe räumliche Auflösung
in der z-Achse des MZCT-Datensatzes und eine hohe Präzision in der Fertigung erklärt
ist. Anatomische Landmarken können sowohl am Schädelmodell als auch am 3-D-Datensatz
mit hoher Genauigkeit reproduzierbar bestimmt werden.
Abstract
Purpose: To evaluate the accuracy of craniofacial 3D models produced in the standardized selective
laser sintering (SLS) technique from multislice computed tomography (MSCT) data sets
in comparison with patient data and to investigate the effect of potential causes
of inaccuracies. Materials and Methods: 19 models were considered and examined by MSCT. The patient CT data used for 3D modeling
was analyzed and compared to the 3D model data. 15 anatomical landmarks were defined
and 20 distances were digitally measured. The digital measurements of both CT data
sets were compared to manually measured distances of the SLS model. Results: There was not a statistically significant difference (p < 0.05) between the measurements
of the distances concerning all three groups (patient CT data, model CT data, manual
measurement of the model). The mean values of the differences were between 0.5455
and –0.3214 mm. Conclusion: We found a high accuracy of SLS 3D models, which is due to a high precision in the
modeling process and to the small voxel size of patient CT data achieved by MSCT.
Anatomical landmarks in patient and model CT data sets and on the 3D model were able
to be accurately reproduced, which is important for preoperative planning.
Key words
face - head/neck - CT - dysplasias - technical aspects - CT spiral
Literatur
1
Bill J S, Reuther J F.
Rapid prototyping in planning reconstructive surgery of the head and neck. Review
and evaluation of indications in clinical use.
Mund Kiefer Gesichtschirurgie.
2004;
8
135-153
2
Mankovich N J, Cheeseman A M, Stoker N G.
The display of three-dimensional anatomy with stereolithographic models.
J Digit Imaging.
1990;
3
200-203
3
Mankovich N J, Samson D, Pratt W. et al .
Surgical planning using three-dimensional imaging and computer modelling.
Otolaryngol Clin North Am.
1994;
27
875-889
4
Ono I, Ohura T, Narumi E. et al .
Three-dimensional analysis of craniofacial bones using three-dimensional computer
tomography.
J Craniomaxillofac Surg.
1992;
20
49-60
5
Stoker N G, Mankovich N J, Valentino D. et al .
Stereolitographic models for surgical planning: preliminary report.
J Oral Maxillofac Surg.
1992;
50
466-471
6
Bill J S, Reuther J F, Mühling J. et al .
Stereolithographie-eine neue Methode zur implantologischen Operationsplanung nach
Unterkiefer-Rekonstruktion.
Dtsch Zahnärztl Z.
1993;
48
789-792
7
Lindner A, Rasse M, Wolf H P. et al .
Indications and use of stereolithographic skull reconstructions in oromaxillofacial
surgery.
Radiologe.
1995;
35
578-582
8
Yang S, Leong K F, Du Z. et al .
The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping
techniques.
Tissue Eng.
2002;
8
1-11
9
Aung S C, Tan B K, Foo C L. et al .
Selective laser sintering: application of a rapid prototyping method in craniomaxillofacial
reconstructive surgery.
Ann Acad Med Singapore.
1999;
28
739-743
10
D’Urso P S, Atkinson R L, Lanigan M W. et al .
Stereolithographic (SL) biomodelling in craniofacial surgery.
Br J Plast Surg.
1998;
51
522-530
11
Barker T M, Earwaker W J, Lisle D A.
Accuracy of stereolithographic models of human anatomy.
Australas Radiol.
1994;
38
106-111
12
Bill J S, Reuther J F, Dittmann W. et al .
Stereolithography in oral and maxillofacial operation-planning.
Int J Oral Maxillofac Surg.
1995;
24
98-103
13
Chang P S, Parker T H, Patrick C W. et al .
The accuracy of stereolithography in planning craniofacial bone replacement.
J Craniofac Surg.
2003;
14
164-170
14
Choi J Y, Choi J H, Kim N K. et al .
Analysis of errors in medical rapid prototyping models.
J Oral Maxillofac Surg.
2002;
31
23-32
15
Alberti Jr C.
Three-dimesional CT and structure models.
Br J Radiol.
1980;
53
261-262
16
Santler G, Kärcher H, Kern R.
Stereolithographiy models vs. milled 3D models. Production, indications, accuracy.
Mund Kiefer Gesichtschir.
1998;
2
91-95
17
Berry E, Brown J M, Connell M. et al .
Preliminary experience with medical applications of rapid prototyping by selective
laser sintering.
Wed Eng Phys.
1997;
19
90-96
18
Lill W, Solar P, Ulm C. et al .
Reproducibility of three-dimensional CT-assisted model of production in the maxillofacial
area.
Br J Oral Maxillofac Surg.
1992;
30
233-236
19 Kärcher H. Functional surgery of the head and neck. Graz; Druck- und Verlagsgesellschaft
1995: 65
20 Kärcher H. Functional surgery of the head and neck. Graz; Druck- und Verlagsgesellschaft
1995: 11
21
Kragskov J, Sindet-Pedersen S, Gyldensted C. et al .
A comparison of three-dimensional computed tomography scans and stereolithographic
models for evaluation of craniofacial anomalies.
J Oral Maxillofac Surg.
1996;
54
402-411
22
Koller F, Roth J.
Die Bestimmung der effektiven Dosen bei CT-Untersuchungen und deren Beeinflussung
durch Einstellparameter.
Fortschr Röntgenstr.
2007;
179
38-45
23
Dörfler A, Struffert T, Engelhorn T. et al .
Rotational Flat-Panel Computed Tomography in Diagnostic and Interventional Neuroradiology.
Fortschr Röntgenstr.
2008;
180
891-898
24
Coppenrath E, Draenert F, Lechel U. et al .
Schnittbildtechnik zur dentomaxillofazialen Diagnostik: Dosisvergleich von Dental-MSCT
und NewTom® 9000 DVT.
Fortschr Röntgenstr.
2008;
180
396-401
PD Dr. Achim H. Kaim
Institut für Radiologie, Hirslanden-Klinik
Schänisweg
5001 Aarau
Schweiz
Phone: + + 41/62/8 36 70 33
Fax: + + 41/62/8 36 70 34
Email: Achim.Kaim@hirslanden.ch