RSS-Feed abonnieren
DOI: 10.1055/s-0028-1109362
© Georg Thieme Verlag KG Stuttgart · New York
Die automatisierte Bestimmung eines optimalen Rekonstruktionsintervalls bei der nativen EKG-gegateten CT-Diagnostik der Koronarsklerose mittels „Motion Maps”
Automatic Phase Point Determination of Minimal Motion Reconstruction Intervals with Motion Maps in ECG-Gated CT Diagnostics of Coronary SclerosisPublikationsverlauf
eingereicht: 13.11.2008
angenommen: 10.3.2009
Publikationsdatum:
09. Juni 2009 (online)

Zusammenfassung
Ziel: Evaluation von Motion Maps zur automatisierten Bestimmung von RR-Rekonstruktionsintervallen bei der CT-Diagnostik des koronararteriellen Kalzium-Scores. Material und Methoden: Bei 24 Patienten wurden mittels EKG-getriggerter, nicht kontrastverstärkter Herz-CT der Kalzium-Score bestimmt. Durch die Motion-Map-Software wurden Bildserien mit niedriger Auflösung in 2 %-Schritten des RR-Intervalls rekonstruiert und die bewegungsarmen Herzphasen bestimmt. Die Bildrekonstruktion zur Befundung erfolgte in 10 %-Schritten innerhalb eines RR-Intervalls (RR-Daten) und entsprechend der Motion Maps (MM-Daten). Für alle Datensätze wurde der Agatston-Score ermittelt. Die Bildqualität wurde durch 2 unabhängige Beobachter ausgewertet. Unter Berücksichtigung der Bildqualität und des Agatston-Scores wurden die RR- und MM-Daten verglichen. Ergebnisse: Der mittlere Agatston-Score wies bei den RR-Daten eine Streuung von 127 Punkten pro Patient auf, weshalb 41 % der Patienten unterschiedlichen Risikogruppen zuzuordnen waren. Bei den MM-Daten ergab sich eine Streuung von 55 Punkten, hier wurden 16 % Patienten unterschiedlich eingruppiert. Hinsichtlich der Bildqualität lag eine moderate Interrater-Varianz vor. Die Bildqualität war im Intervall zwischen 30 und 40 % und zwischen 70 und 80 % am besten. Die Motion-Map-Rekonstruktionen wiesen durchweg eine gute Bildqualität auf. Schlussfolgerung: Bei der Untersuchung koronararterieller Verkalkungen ist die Wahl eines geeigneten Rekonstruktionsintervalls erforderlich, um die Patienten in die richtige Risikogruppe einzuteilen. Durch die Motion-Map-Methode kann nicht nur der Rekonstruktionsaufwand, sondern auch die Zuordnung der Patienten zu unterschiedlichen Risikogruppen minimiert werden.
Abstract
Purpose: Cardio-CT motion maps for automated cardiac phase point determination were evaluated for image quality and reliability of coronary calcium scores. Materials and Methods: 24 patients underwent ECG-gated non-enhanced cardiac CT for calcium scoring. From raw data the motion map software reconstructed low-resolution images in 2 % steps of the RR interval and automatically generated cardiac motion maps for determination of minimal motion phase points. Diagnostic images were reconstructed in 10 % steps of the RR interval (RR data) and according to the motion maps (MM data). For every data set, the Agatston score was calculated. Image quality was evaluated by two independent observers. Image quality was correlated with the Agatston score. Results: The Agatston score calculated over the RR interval showed a mean variation of 127 with 41 % of patients assigned to more than one risk group. If the motion map RR intervals were calculated, only 16 % patients were assigned to different risk categories with a mean variation of 55. Regarding the image quality, the inter-rater variance was moderate. The best image quality was achieved with the 30 – 40 % and 70 – 80 % RR interval. Over the complete RR interval motion map reconstructions produced a good image quality. Conclusion: Calculation of the Agatston score requires selection of the proper reconstruction interval to guarantee the assignment of patients into the appropriate risk category. By using motion maps for phase point determination, the amount of necessary reconstruction can be minimized and the assignment to different risk groups is also reduced.
Key words
cardiac - arteriosclerosis - calcium score - coronary artery disease - motion map - agatston
Literatur
- 1
Weber C, Begemann P, Wedegartner U. et al .
Koronarkalkquantifizierung und Koronarangiographie mittels Mehrzeilendetektorspiral-CT
– Klinische Erfahrungen.
Fortschr Röntgenstr.
2005;
177
50-59
MissingFormLabel
- 2
Shaw L J, Raggi P, Schisterman E. et al .
Prognostic value of cardiac risk factors and coronary artery calcium screening for
all-cause mortality.
Radiology.
2003;
228
826-833
MissingFormLabel
- 3
Becker C R, Majeed A, Crispin A. et al .
CT measurement of coronary calcium mass: impact on global cardiac risk assessment.
Eur Radiol.
2005;
15
96-101
MissingFormLabel
- 4
Becker C R.
Estimation of cardiac event risk by MDCT.
Eur Radiol.
2005;
15 (Suppl 2)
B17-B22
MissingFormLabel
- 5
Brown E R, Kronmal R A, Bluemke D A. et al .
Coronary calcium coverage score: determination, correlates, and predictive accuracy
in the Multi-Ethnic Study of Atherosclerosis.
Radiology.
2008;
247
669-675
MissingFormLabel
- 6
Agatston A S, Janowitz W R, Hildner F J. et al .
Quantification of coronary artery calcium using ultrafast computed tomography.
J Am Coll Cardiol.
1990;
15
827-832
MissingFormLabel
- 7
Breen J F, Sheedy P F, Schwartz R S. et al .
Coronary artery calcification detected with ultrafast CT as an indication of coronary
artery disease.
Radiology.
1992;
185
435-439
MissingFormLabel
- 8
Rumberger J A, Brundage B H, Rader D J. et al .
Electron beam computed tomographic coronary calcium scanning: a review and guidelines
for use in asymptomatic persons.
Mayo Clin Proc.
1999;
74
243-252
MissingFormLabel
- 9
Weininger M, Ritter C O, Beer M. et al .
Bestimmung des koronaren Kalzium-Scores mittels 64-Zeilen-CT – Variabilität der Scores
und Einfluss des Rekonstruktionszeitpunktes.
Fortschr Röntgenstr.
2007;
179
938-944
MissingFormLabel
- 10
Begemann P G, Stevendaal van U, Koester R. et al .
Evaluation of the influence of acquisition and reconstruction parameters for 16-row
multidetector CT on coronary calcium scoring using a stationary and dynamic cardiac
phantom.
Eur Radiol.
2007;
17
1985-1994
MissingFormLabel
- 11
Schlosser T, Hunold P, Schmermund A. et al .
Coronary artery calcium score: influence of reconstruction interval at 16-detector
row CT with retrospective electrocardiographic gating.
Radiology.
2004;
233
586-589
MissingFormLabel
- 12
Schlosser T, Hunold P, Voigtlander T. et al .
Coronary artery calcium scoring: influence of reconstruction interval and reconstruction
increment using 64-MDCT.
Am J Roentgenol.
2007;
188
1063-1068
MissingFormLabel
- 13
Hoffmann M H, Shi H, Manzke R. et al .
Noninvasive coronary angiography with 16-detector row CT: effect of heart rate.
Radiology.
2005;
234
86-97
MissingFormLabel
- 14
Manzke R, Köhler T, Nielsen T. et al .
Automatic phase determination for retrospectively gated cardiac CT.
Med Phys.
2004;
31
3345-3362
MissingFormLabel
- 15
Hoffmann M H, Lessick J, Manzke R. et al .
Automatic determination of minimal cardiac motion phases for computed tomography imaging:
initial experience.
Eur Radiol.
2006;
16
365-373
MissingFormLabel
- 16
Hausleiter J, Meyer T, Hadamitzky M. et al .
Radiation dose estimates from cardiac multislice computed tomography in daily practice:
impact of different scanning protocols on effective dose estimates.
Circulation.
2006;
113
1305-1310
MissingFormLabel
- 17
Manzke R, Grass M und Hawkes D.
Artifact analysis and reconstruction improvement in helical cardiac cone beam CT.
Trans Med Imaging.
2004;
23
1150-1164
MissingFormLabel
- 18
Grass M, Manzke R, Nielsen T. et al .
Helical cardiac cone beam reconstruction using retrospective ECG gating.
Phys Med Biol.
2003;
48
3069-3084
MissingFormLabel
- 19
Achenbach S, Ropers D, Pohle K. et al .
Influence of lipid-lowering therapy on the progression of coronary artery calcification:
a prospective evaluation.
Circulation.
2002;
106
1077-1082
MissingFormLabel
- 20
Mühlenbruch G, Thomas C, Wildberger J E. et al .
Effect of varying slice thickness on coronary calcium scoring with multislice computed
tomography in vitro and in vivo.
Invest Radiol.
2005;
40
695-699
MissingFormLabel
- 21
Hirai N, Horiguchi J, Fujioka C. et al .
Prospective versus retrospective ECG-gated 64-detector coronary CT angiography: assessment
of image quality, stenosis, and radiation dose.
Radiology.
2008;
248
424-430
MissingFormLabel
- 22
Shuman W P, Branch K R, May J M. et al .
Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries:
comparison of image quality and patient radiation dose.
Radiology.
2008;
248
431-437
MissingFormLabel
- 23
Stolzmann P, Leschka S, Betschart T. et al .
Radiation dose values for various coronary calcium scoring protocols in dual-source
CT.
Int J Cardiovasc Imaging.
2009;
25
443-451
MissingFormLabel
- 24
Horiguchi J, Matsuura N, Yamamoto H. et al .
Coronary artery calcium scoring on low-dose prospective electrocardiographically-triggered
64-slice CT.
Acad Radiol.
2009;
16
187-193
MissingFormLabel
- 25
Begemann P G, Stevendaal van U, Manzke R. et al .
Evaluation of spatial and temporal resolution for ECG-gated 16-row multidetector CT
using a dynamic cardiac phantom.
Eur Radiol.
2005;
15
1015-1026
MissingFormLabel
- 26
Ohnesorge B, Flohr T, Fischbach R. et al .
Reproducibility of coronary calcium quantification in repeat examinations with retrospectively
ECG-gated multisection spiral CT.
Eur Radiol.
2002;
12
1532-1540
MissingFormLabel
- 27
Hong C, Bae K T, Pilgram T K. et al .
Coronary artery calcium quantification at multi-detector row CT: influence of heart
rate and measurement methods on interacquisition variability initial experience.
Radiology.
2003;
228
95-100
MissingFormLabel
- 28
Leschka S, Husmann L, Desbiolles L M. et al .
Optimal image reconstruction intervals for non-invasive coronary angiography with
64-slice CT.
Eur Radiol.
2006;
16
1964-1972
MissingFormLabel
- 29
Horiguchi J, Fukuda H, Yamamoto H. et al .
The impact of motion artifacts on the reproducibility of repeated coronary artery
calcium measurements.
Eur Radiol.
2007;
17
81-86
MissingFormLabel
- 30
Vembar M, Garcia M J, Heuscher D J. et al .
A dynamic approach to identifying desired physiological phases for cardiac imaging
using multislice spiral CT.
Med Phys.
2003;
30
1683-1693
MissingFormLabel
- 31
AG Herzdiagnostik der Deutschen Röntgengesellschaft Computertomographie des Herzens:
Aktuelle Leitlinien.
Fortschr Röntgenstr.
2004;
176
632-637
MissingFormLabel
- 32
Mahnken A H, Sinha A M, Wildberger J E. et al .
Der Einfluss rekonstruktionsbedingter Bewegungsartefakte auf den koronaren Kalzium-Score
bei der Mehrschicht-Spiral-CT.
Fortschr Röntgenstr.
2001;
173
888-892
MissingFormLabel
- 33
Budoff M J, Achenbach S, Blumenthal R S. et al .
Assessment of coronary artery disease by cardiac computed tomography: a scientific
statement from the American Heart Association Committee on Cardiovascular Imaging
and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee
on Cardiac Imaging, Council on Clinical Cardiology.
Circulation.
2006;
114
1761-1791
MissingFormLabel
- 34
Greenland P, Bonow R O, Brundage B H. et al .
ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring
by computed tomography in global cardiovascular risk assessment and in evaluation
of patients with chest pain: a report of the American College of Cardiology Foundation
Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000
Expert Consensus Document on Electron Beam Computed Tomography).
Circulation.
2007;
115
402-426
MissingFormLabel
- 35
Mühlenbruch G, Thomas C, Wildberger J E. et al .
Effect of varying slice thickness on coronary calcium scoring with multislice computed
tomography in vitro and in vivo.
Invest Radiol.
2005;
40
695-699
MissingFormLabel
- 36
Achenbach S, Ropers D, Mohlenkamp S. et al .
Variability of repeated coronary artery calcium measurements by electron beam tomography.
Am J Cardiol.
2001;
87
210-213
MissingFormLabel
- 37
Matsuura N, Horiguchi J, Yamamoto H. et al .
Optimal cardiac phase for coronary artery calcium scoring on single-source 64-MDCT
scanner: least interscan variability and least motion artifacts.
Am J Roentgenol.
2008;
190
1561-1568
MissingFormLabel
Dr. Thorsten Klink
Klinik und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum
Hamburg-Eppendorf
Martinistraße 52
20246 Hamburg
Telefon: ++ 49/40/4 28 03 24 63
Fax: ++ 49/40/4 28 03 38 02
eMail: t.klink@uke.uni-hamburg.de