RSS-Feed abonnieren
DOI: 10.1055/s-0028-1109420
© Georg Thieme Verlag KG Stuttgart · New York
Die Bedeutung des TNF-α-Systems für Erkrankungen des Gehirns
The Relevance of the TNF-α System in Psychiatric DisordersPublikationsverlauf
Publikationsdatum:
04. Mai 2009 (online)

Zusammenfassung
Es gibt vielfache Hinweise in der Literatur darauf, dass Veränderungen des Immunsystems oder spezifischer ausgedrückt des Zytokinsystems, zu dem auch der Tumornekrosefaktor-alpha (TNF-α) zählt, an der Entstehung neurologischer Erkrankungen aus dem entzündlichen und neurodegenerativen Formenkreis wie der Multiplen Sklerose, dem Morbus Alzheimer und Morbus Parkinson sowie psychiatrischer Erkrankungen wie der Depression, Schizophrenie und Narkolepsie beteiligt sind. Zudem bestehen Zusammenhänge zwischen Zytokinkonzentrationen im Serum und dem Risiko zereobrovaskulärer Ereignisse. Auch Körpergewicht, Alter und neuroendokrinologische Mechanismen haben einen starken Einfluss auf die Plasmakonzentrationen von TNF-α und seiner löslichen Rezeptoren (sTNF-Rs). TNF-α könnte zur Pathogenese dieser Erkrankungen durch eine Aktivierung der Hypothalamus-Hypophysen-Nebennierenrinden-Achse (HPA-Achse), eine Aktivierung von Serotonintransportern, eine Stimulation der Indolamin-2,3-Dioxygenase, die zur Tryptophandepletion führt, einen immunologisch vermittelten Neuronenuntergang oder neurotoxische Effekte durch Glutamatausschüttung beitragen. Auch eine psychopharmakologische Therapie beeinflusst das Immunsystem. Bei der antipsychotischen Therapie ist möglicherweise ein Teil der Wirkung bestimmter Antipsychotika über eine Induktion inflammatorischer Zytokine vermittelt. Es ist zu wünschen, dass diese Überlegungen in naher Zukunft zu immunmodulatorischen Therapiestrategien für psychisch kranke Patienten führen.
Abstract
Changes regarding the immune system and specifically the cytokine system, of which tumor necrosis factor-alpha (TNF-α) is a part, have been shown to be involved in the development of neurological and psychiatric disorders such as multiple sclerosis, Parkinson‘s and Alzheimer‘s disease, depression, schizophrenia or narcolepsy. Besides, there is evidence that the risk of stroke correlates with the serum concentrations of different cytokines. Additionally, body weight, age and neuroendocrinological mechanism have a strong influence upon plasma levels of TNF-α and its soluble receptors (sTNF-Rs). TNF-α might contribute to the pathogenesis of these diseases by an activation of the hypothalamo-pituitary-adrenocortical (HPA) axis, an activation of neuronal serotonin transporters, the stimulation of the indoleamine 2,3-dioxygenase which leads to tryptophan depletion, by immunologically mediated destruction of neurons, or neurotoxic release of glutamate. Psychotropic drugs influence the TNF-α system, too. During psychopharmacological treatment of schizophrenia, some antipsychotics might act on neurotransmitter metabolism via inducing the proinflammatory cytokine system. Hopefully, these hypotheses may lead to new therapeutical strategies for psychiatric patients in the near future.
Schlüsselwörter
TNF-α - Depression - Schizophrenie - Narkolepsie - Psychopharmaka - Zytokin - Entzündung
Key words
TNF-α - depression - schizophrenia - narcolepsy - psychopharmacology - cytokine - inflammation
Literatur
- 1 Himmerich H. Neuroimmunologie. Holsboer F, Gründer G, Benkert O Handbuch der Psychopharmakologie Heidelberg; Springer 2007 1. Aufl: 369-374
MissingFormLabel
- 2
Fricchione G, Daly R, Rogers M P. et al .
Neuroimmunologic influences in neuropsychiatric and psychophysiologic disorders.
Acta Pharmacol Sin.
2001;
22
577-587
MissingFormLabel
- 3
Dantzer R.
Cytokine-induced sickness behaviour: a neuroimmune response to activation of innate
immunity.
Eur J Pharmacol.
2004;
500
399-411
MissingFormLabel
- 4 Harenberg Lexikon der Nobelpreisträger. Dortmund; Harenberg Lexikon Verlag 2000
MissingFormLabel
- 5
Carswell E A, Old L J, Kassel R L. et al .
An endotoxin-induced serum factor that causes necrosis of tumors.
Proc Natl Acad Sci USA.
1975;
72
3666-3670
MissingFormLabel
- 6
Clark I A.
How TNF was recognized as a key mechanism of disease.
Cytokine Growth Factor Rev.
2007;
18
335-343
MissingFormLabel
- 7
Goodsell D S.
The molecular perspective: tumor necrosis factor.
Oncologist.
2006;
11
83-84
MissingFormLabel
- 8
Fiers W.
Tumor necrosis factor. Characterization at the molecular, cellular and in vivo level.
FEBS Lett.
1991;
285
199-212
MissingFormLabel
- 9
Perskidskiî I uV, Barshteiîn I uA.
Biological manifestations of the tumor necrosis factor effect and its role in the
pathogenesis of various diseases.
Arkh Patol.
1992;
54
5-10
MissingFormLabel
- 10
Himmerich H.
Activity of the TNF-alpha system in patients with brain disorders and during psychopharmacological
treatment.
Curr Pharmaceut Anal.
2007;
3
1-5
MissingFormLabel
- 11
Wajant H, Pfizenmaier K, Scheurich P.
Tumor necrosis factor signaling.
Cell Death Differ.
2003;
10
45-65
MissingFormLabel
- 12
Plümpe J, Malek N P, Bock C T. et al .
NF-kappaB determines between apoptosis and proliferation in hepatocytes during liver
regeneration.
Am J Physiol Gastrointest Liver Physiol.
2000;
278
173-183
MissingFormLabel
- 13
Alikhani M, Alikhani Z, Raptis M. et al .
TNF-alpha in vivo stimulates apoptosis in fibroblasts through caspase-8 activation
and modulates the expression of pro-apoptotic genes.
J Cell Physiol.
2004;
201
341-348
MissingFormLabel
- 14
Reddy P, Slack J L, Davis R. et al .
Functional analysis of the domain structure of tumor necrosis factor-alpha converting
enzyme.
J Biol Chem.
2000;
275
14608-14614
MissingFormLabel
- 15
Glossop J R, Dawes P T, Nixon N B. et al .
Polymorphism in the tumour necrosis factor receptor II gene is associated with circulating
levels of soluble tumour necrosis factor receptors in rheumatoid arthritis.
Arthritis Res Ther.
2005;
7
1227-1234
MissingFormLabel
- 16
Himmerich H, Fulda S, Linseisen J. et al .
TNF-alpha, soluble TNF receptor and interleukin-6 plasma levels in the general population.
Eur Cytokine Netw.
2006;
17
196-201
MissingFormLabel
- 17
Bastard J P, Maachi M, Lagathu C. et al .
Recent advances in the relationship between obesity, inflammation, and insulin resistance.
Eur Cytokine Netw.
2006;
17
4-12
MissingFormLabel
- 18
Zeyda M, Farmer D, Todoric J. et al .
Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable
of excessive pro-inflammatory mediator production.
Int J Obes.
2007;
31
1420-1428
MissingFormLabel
- 19
Panagiotakos D B, Pitsavos C, Yannakoulia M. et al .
The implication of obesity and central fat on markers of chronic inflammation: The
ATTICA study.
Atherosclerosis.
2005;
183
308-315
MissingFormLabel
- 20
Arzt E, Kovalovsky D, Igaz L M. et al .
Functional cross-talk among cytokines, T-cell receptor, and glucocorticoid receptor
transcriptional activity and action.
Ann N Y Acad Sci.
2000;
917
672-677
MissingFormLabel
- 21
Kapcala L P, Chautard T, Eskay R L.
The protective role of the hypothalamic-pituitary-adrenal axis against lethality produced
by immune, infectious, and inflammatory stress.
Ann N Y Acad Sci.
1995;
771
419-437
MissingFormLabel
- 22
Silverman M N, Pearce B D, Biron C A. et al .
Immune modulation of the hypothalamic-pituitary-adrenal (HPA) axis during viral infection.
Viral Immunol.
2005;
18
41-78
MissingFormLabel
- 23
Tilders F J, DeRijk R H, Van Dam A M. et al .
Activation of the hypothalamus-pituitary-adrenal axis by bacterial endotoxins: routes
and intermediate signals.
Psychoneuroendocrinology.
1994;
19
209-232
MissingFormLabel
- 24
Besedovsky H O, del Rey A.
The cytokine-HPA axis feed-back circuit.
Z Rheumatol.
2000;
59 (Suppl 2)
26-30
MissingFormLabel
- 25
Reul J M, Labeur M S, Wiegers G J. et al .
Altered neuroimmunoendocrine communication during a condition of chronically increased
brain corticotropin-releasing hormone drive.
Ann N Y Acad Sci.
1998;
840
444-455
MissingFormLabel
- 26
Schöbitz B, Reul J M, Holsboer F.
The role of the hypothalamic-pituitary-adrenocortical system during inflammatory conditions.
Crit Rev Neurobiol.
1994;
8
263-291
MissingFormLabel
- 27
Michie H R, Spriggs D R, Manogue K R. et al .
Tumor necrosis factor and endotoxin induce similar metabolic responses in human beings.
Surgery.
1988;
104
280-286
MissingFormLabel
- 28
Petrovsky N, McNair P, Harrison L C.
Diurnal rhythms of pro-inflammatory cytokines: regulation by plasma cortisol and therapeutic
implications.
Cytokine.
1998;
10
307-312
MissingFormLabel
- 29
Conti B, Tabarean I, Andrei C. et al .
Cytokines and fever.
Front Biosci.
2004;
9
1433-1449
MissingFormLabel
- 30
Plata-Salamán C R.
1998 Curt P. Richter Award. Brain mechanisms in cytokine-induced anorexia.
Psychoneuroendocrinology.
1999;
24
25-41
MissingFormLabel
- 31
Pessayre D, Berson A, Fromenty B. et al .
Mitochondria in steatohepatitis.
Semin Liver Dis.
2001;
21
57-69
MissingFormLabel
- 32
Ledeen R W, Chakraborty G.
Cytokines, signal transduction, and inflammatory demyelination: review and hypothesis.
Neurochem Res.
1998;
23
277-289
MissingFormLabel
- 33
Takeuchi H, Jin S, Wang J. et al .
Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels
of activated microglia in an autocrine manner.
J Biol Chem.
2006;
281
21362-21368
MissingFormLabel
- 34
Handa S.
Concentrations of interleukin-1 beta, interleukin-6, interleukin-8 and TNF-alpha in
cerebrospinal fluid from children with septic or aseptic meningitis.
Kurume Med J.
1992;
39
257-265
MissingFormLabel
- 35
Ichiyama T, Hayashi T, Nishikawa M. et al .
Cerebrospinal fluid levels of soluble tumour necrosis factor receptor in acute encephalitis.
J Neurol.
1996;
243
457-460
MissingFormLabel
- 36
Ichiyama T, Hayashi T, Furukawa S.
Cerebrospinal fluid concentrations of soluble tumor necrosis factor receptor in bacterial
and aseptic meningitis.
Neurology.
1996;
46
837-838
MissingFormLabel
- 37
Mukai A O, Krebs V L, Bertoli C J. et al .
TNF-alpha and IL-6 in the diagnosis of bacterial and aseptic meningitis in children.
Pediatr Neurol.
2006;
34
25-29
MissingFormLabel
- 38
Dulkerian S J, Kilpatrick L, Costarino A T. et al .
Cytokine elevations in infants with bacterial and aseptic meningitis.
J Pediatr.
1995;
126
872-876
MissingFormLabel
- 39
Bociaga-Jasik M, Garlicki A, Kalinowska-Nowak A. et al .
Concentration of proinflammatory cytokines (TNF-alpha, IL-8) in the cerebrospinal
fluid and the course of bacterial meningitis.
Przegl Lek.
2004;
61
78-85
MissingFormLabel
- 40
Fida N M, Al-Mughales J, Farouq M.
Interleukin-1alpha, interleukin-6 and tumor necrosis factor-alpha levels in children
with sepsis and meningitis.
Pediatr Int.
2006;
48
118-124
MissingFormLabel
- 41
Babulas V, Factor-Litvak P, Goetz R. et al .
Prenatal exposure to maternal genital and reproductive infections and adult schizophrenia.
Am J Psychiatry.
2006;
163
927-929
MissingFormLabel
- 42
Ravi V, Parida S, Desai A. et al .
Correlation of tumor necrosis factor levels in the serum and cerebrospinal fluid with
clinical outcome in Japanese encephalitis patients.
J Med Virol.
1997;
51
132-136
MissingFormLabel
- 43
Sergerie Y, Rivest S, Boivin G.
Tumor necrosis factor-alpha and interleukin-1 beta play a critical role in the resistance
against lethal herpes simplex virus encephalitis.
J Infect Dis.
2007;
196
853-860
MissingFormLabel
- 44
Mrak R E, Griffin W S.
Potential inflammatory biomarkers in Alzheimer’s disease.
J Alzheimers Dis.
2005;
8
369-375
MissingFormLabel
- 45
Mrak R E, Griffin W S.
Common inflammatory mechanisms in Lewy body disease and Alzheimer disease.
J Neuropathol Exp Neurol.
2007;
66
683-686
MissingFormLabel
- 46
Griffin W S, Liu L, Li Y. et al .
Interleukin-1 mediates Alzheimer and Lewy body pathologies.
J Neuroinflammation.
2006;
3
5
MissingFormLabel
- 47
Lemere C A.
A beneficial role for IL-1 beta in Alzheimer disease?.
J Clin Invest.
2007;
117
1483-1485
MissingFormLabel
- 48
Shaftel S S, Griffin W S, O’Banion M K.
The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving
perspective.
J Neuroinflammation.
2008;
5
7
MissingFormLabel
- 49
Rogers J T, Lahiri D K.
Metal and inflammatory targets for Alzheimer’s disease.
Curr Drug Targets.
2004;
5
535-551
MissingFormLabel
- 50
Baranowska-Bik A, Bik W, Wolinska-Witort E. et al .
Plasma beta amyloid and cytokine profile in women with Alzheimer’s disease.
Neuro Endocrinol Lett.
2008;
29
75-79
MissingFormLabel
- 51
Bonotis K, Krikki E, Holeva V. et al .
Systemic immune aberrations in Alzheimer’s disease patients.
J Neuroimmunol.
2008;
193
183-187
MissingFormLabel
- 52
Guerreiro R J, Santana I, Brás J M. et al .
Peripheral inflammatory cytokines as biomarkers in Alzheimer’s disease and mild cognitive
impairment.
Neurodegener Dis.
2007;
4
406-412
MissingFormLabel
- 53
Griffin W S.
Perispinal etanercept: potential as an Alzheimer therapeutic.
J Neuroinflammation.
2008;
5
3
MissingFormLabel
- 54
He P, Zhong Z, Lindholm K. et al .
Deletion of tumor necrosis factor death receptor inhibits amyloid beta generation
and prevents learning and memory deficits in Alzheimer’s mice.
J Cell Biol.
2007;
178
829-841
MissingFormLabel
- 55
Medeiros R, Prediger R D, Passos G F. et al .
Connecting TNF-alpha signaling pathways to iNOS expression in a mouse model of Alzheimer’s
disease: relevance for the behavioral and synaptic deficits induced by amyloid beta
protein.
J Neurosci.
2007;
27
5394-5404
MissingFormLabel
- 56
Kim Y S, Joh T H.
Microglia, major player in the brain inflammation: their roles in the pathogenesis
of Parkinson’s disease.
Exp Mol Med.
2006;
38
333-347
MissingFormLabel
- 57
Tansey M G, McCoy M K, Frank-Cannon T C.
Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers,
pathways, and targets for early therapeutic intervention.
Exp Neurol.
2007;
208
1-25
MissingFormLabel
- 58
Nagatsu T, Sawada M.
Inflammatory process in Parkinson’s disease: role for cytokines.
Curr Pharm Des.
2005;
11
999-1016
MissingFormLabel
- 59
Sawada M, Imamura K, Nagatsu T.
Role of cytokines in inflammatory process in Parkinson’s disease.
J Neural Transm Suppl.
2006;
70
373-381
MissingFormLabel
- 60
Mogi M, Harada M, Riederer P. et al .
Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal
fluid from parkinsonian patients.
Neurosci Lett.
1994;
165
208-210
MissingFormLabel
- 61
Hirsch E C, Hunot S, Damier P. et al .
Glial cells and inflammation in Parkinson’s disease: a role in neurodegeneration?.
Ann Neurol.
1998;
44
115-120
MissingFormLabel
- 62
Wu Y R, Feng I H, Lyu R K. et al .
Tumor necrosis factor-alpha promoter polymorphism is associated with the risk of Parkinson’s
disease.
Am J Med Genet B Neuropsychiatr Genet.
2007;
144B
300-304
MissingFormLabel
- 63
Nishimura M, Mizuta I, Mizuta E. et al .
Influence of interleukin-1beta gene polymorphisms on age-at-onset of sporadic Parkinson’s
disease.
Neurosci Lett.
2000;
284
73-76
MissingFormLabel
- 64
McCoy M K, Martinez T N, Ruhn K A. et al .
Blocking soluble tumor necrosis factor signaling with dominant-negative tumor necrosis
factor inhibitor attenuates loss of dopaminergic neurons in models of Parkinson’s
disease.
J Neurosci.
2006;
26
9365-9375
MissingFormLabel
- 65
Wu D C, Jackson-Lewis V, Vila M. et al .
Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
mouse model of Parkinson disease.
J Neurosci.
2002;
22
1763-1771
MissingFormLabel
- 66
Welsh P, Lowe G D, Chalmers J. et al .
Associations of proinflammatory cytokines with the risk of recurrent stroke.
Stroke.
2008;
39
2226-2230
MissingFormLabel
- 67
Hoshi T, Kitagawa K, Yamagami H. et al .
Relations of serum high-sensitivity C-reactive protein and interleukin-6 levels with
silent brain infarction.
Stroke.
2005;
36
768-772
MissingFormLabel
- 68
Rubattu S, Speranza R, Ferrari M. et al .
A role of TNF-alpha gene variant on juvenile ischemic stroke: a case-control study.
Eur J Neurol.
2005;
12
989-993
MissingFormLabel
- 69
Waje-Andreassen U, Kråkenes J, Ulvestad E. et al .
IL-6: an early marker for outcome in acute ischemic stroke.
Acta Neurol Scand.
2005;
111
360-365
MissingFormLabel
- 70
Rodríguez-Yáñez M, Castillo J.
Role of inflammatory markers in brain ischemia.
Curr Opin Neurol.
2008;
21
353-357
MissingFormLabel
- 71
Jenny N S, Tracy R P, Ogg M S. et al .
In the elderly, interleukin-6 plasma levels and the −174G>C polymorphism are associated
with the development of cardiovascular disease.
Arterioscler Thromb Vasc Biol.
2002;
22
2066-2071
MissingFormLabel
- 72
Ridker P M, Rifai N, Stampfer M J. et al .
Plasma concentration of interleukin-6 and the risk of future myocardial infarction
among apparently healthy men.
Circulation.
2000;
101
1767-1772
MissingFormLabel
- 73
Harris T B, Ferrucci L, Tracy R P. et al .
Associations of elevated interleukin-6 and C-reactive protein levels with mortality
in the elderly.
Am J Med.
1999;
106
506-512
MissingFormLabel
- 74
Park H S, Park J Y, Yu R.
Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-alpha
and IL-6.
Diabetes Res Clin Pract.
2005;
69
29-35
MissingFormLabel
- 75
Adamopoulos S, Parissis J, Karatzas D. et al .
Physical training modulates proinflammatory cytokines and the soluble Fas/soluble
Fas ligand system in patients with chronic heart failure.
J Am Coll Cardiol.
2002;
39
653-663
MissingFormLabel
- 76
Tanabe A, Nomura S.
Pathophysiology of depression.
Nippon Rinsho.
2007;
65
1585-1590
MissingFormLabel
- 77
Haack M, Hinze-Selch D, Fenzel T. et al .
Plasma levels of cytokines and soluble cytokine receptors in psychiatric patients
upon hospital admission: effects of confounding factors and diagnosis.
J Psychiatr Res.
1999;
33
407-418
MissingFormLabel
- 78
Maes M, Song C, Lin A H. et al .
Negative immunoregulatory effects of antidepressants: inhibition of interferon-gamma
and stimulation of interleukin-10 secretion.
Neuropsychopharmacology.
1999;
20
370-379
MissingFormLabel
- 79
Pucak M L, Kaplin A I.
Unkind cytokines: current evidence for the potential role of cytokines in immune-mediated
depression.
Int Rev Psychiatry.
2005;
17
477-483
MissingFormLabel
- 80
Maes M, Scharpé S, Meltzer H Y. et al .
Relationships between interleukin-6 activity, acute phase proteins, and function of
the hypothalamic-pituitary-adrenal axis in severe depression.
Psychiatry Res.
1993;
49
11-27
MissingFormLabel
- 81
O’Brien S M, Scott L V, Dinan T G.
Cytokines: abnormalities in major depression and implications for pharmacological
treatment.
Hum Psychopharmacol.
2004;
19
397-403
MissingFormLabel
- 82
Reichenberg A, Yirmiya R, Schuld A. et al .
Cytokine-associated emotional and cognitive disturbances in humans.
Arch Gen Psychiatry.
2001;
58
445-452
MissingFormLabel
- 83
Reichenberg A, Kraus T, Haack M. et al .
Endotoxin-induced changes in food consumption in healthy volunteers are associated
with TNF-alpha and IL-6 secretion.
Psychoneuroendocrinology.
2002;
27
945-956
MissingFormLabel
- 84
Linthorst A C, Reul J M.
Inflammation and brain function under basal conditions and during long-term elevation
of brain corticotropin-releasing hormone levels.
Adv Exp Med Biol.
1999;
461
129-152
MissingFormLabel
- 85
Yirmiya R.
Behavioral and psychological effects of immune activation: implications for depression
due to a general medical condition.
Curr Opin Psychiatry.
1997;
10
470-476
MissingFormLabel
- 86
Schuld A, Schmid D A, Haack M. et al .
Hypothalamo-pituitary-adrenal function in patients with depressive disorders is correlated
with baseline cytokine levels, but not with cytokine responses to hydrocortisone.
J Psychiatr Res.
2003;
37
463-470
MissingFormLabel
- 87
Himmerich H, Binder E B, Künzel H E. et al .
Successful antidepressant therapy restores the disturbed interplay between TNF-alpha
system and HPA axis.
Biol Psychiatry.
2006;
60
882-888
MissingFormLabel
- 88
Zhu C B, Blakely R D, Hewlett W A.
The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate
serotonin transporters.
Neuropsychopharmacology.
2006;
31
2121-2131
MissingFormLabel
- 89
Wichers M, Maes M.
The psychoneuroimmuno-pathophysiology of cytokine-induced depression in humans.
Int J Neuropsychopharmacol.
2002;
5
375-388
MissingFormLabel
- 90
Brown A S, Hooton J, Schaefer C A. et al .
Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring.
Am J Psychiatry.
2004;
161
889-895
MissingFormLabel
- 91
Brown A S, Begg M D, Gravenstein S. et al .
Serologic evidence of prenatal influenza in the etiology of schizophrenia.
Arch Gen Psychiatry.
2004;
61
774-780
MissingFormLabel
- 92
Brown A S, Schaefer C A, Quesenberry C P. et al .
Maternal exposure to toxoplasmosis and risk of schizophrenia in adult offspring.
Am J Psychiatry.
2005;
162
767-773
MissingFormLabel
- 93
Buka S L, Cannon T D, Torrey E F. et al .
Maternal exposure to herpes simplex virus and risk of psychosis among adult offspring.
Biol Psychiatry.
2008;
63
809-815
MissingFormLabel
- 94
Gattaz W F, Abrahão A L, Foccacia R.
Childhood meningitis, brain maturation and the risk of psychosis.
Eur Arch Psychiatry Clin Neurosci.
2004;
254
23-26
MissingFormLabel
- 95
Rantakallio P, Jones P, Moring J. et al .
Association between central nervous system infections during childhood and adult onset
schizophrenia and other psychoses: a 28-year follow-up.
Int J Epidemiol.
1997;
26
837-843
MissingFormLabel
- 96
Müller N, Riedel M, Ackenheil M. et al .
Cellular and humoral immune system in schizophrenia: a conceptual re-evaluation.
World J Biol Psychiatry.
2000;
1
173-179
MissingFormLabel
- 97
Wilke I, Arolt V, Rothermundt M. et al .
Investigations of cytokine production in whole blood cultures of paranoid and residual
schizophrenic patients.
Eur Arch Psychiatry Clin Neurosci.
1996;
246
279-284
MissingFormLabel
- 98 Kammen, McAllister-Sistilli, Kelley. Relationship between immune and behavioral measures in schizophrenia. Wieselmann, G Current update in psychoimmunology Berlin, Heidelberg, New York; Springer 1997
MissingFormLabel
- 99
Müller N, Schwarz M J.
Immunologische Aspekte bei schizophrenen Störungen.
Nervenarzt.
2007;
78
253-263
MissingFormLabel
- 100
Stone T W.
Neuropharmacology of quinolinic and kynurenic acids.
Pharmacol Rev.
1993;
45
309-379
MissingFormLabel
- 101
Erhardt S, Schwieler L, Engberg G.
Kynurenic acid and schizophrenia.
Adv Exp Med Biol.
2003;
527
155-165
MissingFormLabel
- 102
Erhardt S, Schwieler L, Nilsson L. et al .
The kynurenic acid hypothesis of schizophrenia.
Physiol Behav.
2007;
92
203-209
MissingFormLabel
- 103
Schwarcz R, Rassoulpour A, Wu H Q. et al .
Increased cortical kynurenate content in schizophrenia.
Biol Psychiatry.
2001;
50
521-530
MissingFormLabel
- 104
Müller N, Ulmschneider M, Scheppach C. et al .
COX-2 inhibition as a treatment approach in schizophrenia: immunological considerations
and clinical effects of celecoxib add-on therapy.
Eur Arch Psychiatry Clin Neurosci.
2004;
254
14-22
MissingFormLabel
- 105
Müller N, Riedel M, Schwarz M J.
Psychotropic effects of COX-2 inhibitors--a possible new approach for the treatment
of psychiatric disorders.
Pharmacopsychiatry.
2004;
37
266-269
MissingFormLabel
- 106
Müller N, Riedel M, Scheppach C. et al .
Beneficial antipsychotic effects of celecoxib add-on therapy compared to risperidone
alone in schizophrenia.
Am J Psychiatry.
2002;
159
1029-1034
MissingFormLabel
- 107
Müller N, Riedel M, Schwarz M J. et al .
Clinical effects of COX-2 inhibitors on cognition in schizophrenia.
Eur Arch Psychiatry Clin Neurosci.
2005;
255
149-151
MissingFormLabel
- 108
Yokota O, Terada S, Ishihara T. et al .
Neuronal expression of cyclooxygenase-2, a pro-inflammatory protein, in the hippocampus
of patients with schizophrenia.
Prog Neuropsychopharmacol Biol Psychiatry.
2004;
28
715-721
MissingFormLabel
- 109
Kato T, Monji A, Hashioka S. et al .
Risperidone significantly inhibits interferon-gamma-induced microglial activation
in vitro.
Schizophr Res.
2007;
92
108-115
MissingFormLabel
- 110
Potvin S, Stip E, Sepehry A A. et al .
Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review.
Biol Psychiatry.
2008;
63
801-808
MissingFormLabel
- 111
Bresee C J, Delrahim K, Maddux R E. et al .
The effects of celecoxib augmentation on cytokine levels in schizophrenia.
Int J Neuropsychopharmacol.
2006;
9
343-348
MissingFormLabel
- 112 Mayer G, Pollmächer T. Narkolepsie – Neue Chancen in Diagnostik und Therapie. Thieme 2007
MissingFormLabel
- 113
Lin L, Hungs M, Mignot E.
Narcolepsy and the HLA region.
J Neuroimmunol.
2001;
117
9-20
MissingFormLabel
- 114
Mignot E, Tafti M, Dement W C. et al .
Narcolepsy and immunity.
Adv Neuroimmunol.
1995;
5
23-37
MissingFormLabel
- 115
Möller E, Böhme J, Valugerdi M A. et al .
Speculations on mechanisms of HLA associations with autoimmune diseases and the specificity
of „autoreactive” T lymphocytes.
Immunol Rev.
1990;
118
5-19
MissingFormLabel
- 116
Dauvilliers Y.
Neurodegenerative, autoimmune and genetic processes of human and animal narcolepsy.
Rev Neurol.
2003;
159
83-87
MissingFormLabel
- 117
Thannickal T C, Moore R Y, Nienhuis R. et al .
Reduced number of hypocretin neurons in human narcolepsy.
Neuron.
2000;
27
469-474
MissingFormLabel
- 118
Hohjoh H, Nakayama T, Ohashi J. et al .
Significant association of a single nucleotide polymorphism in the tumor necrosis
factor-alpha (TNF-alpha) gene promoter with human narcolepsy.
Tissue Antigens.
1999;
54
138-145
MissingFormLabel
- 119
Himmerich H, Beitinger P A, Fulda S. et al .
Plasma levels of tumor necrosis factor alpha and soluble tumor necrosis factor receptors
in patients with narcolepsy.
Arch Intern Med.
2006;
166
1739-1743
MissingFormLabel
- 120
Hinze-Selch D, Schuld A, Kraus T. et al .
Effects of antidepressants on weight and on the plasma levels of leptin, TNF-alpha
and soluble TNF receptors: A longitudinal study in patients treated with amitriptyline
or paroxetine.
Neuropsychopharmacology.
2000;
23
13-19
MissingFormLabel
- 121
Kraus T, Haack M, Schuld A. et al .
Body weight, the tumor necrosis factor system, and leptin production during treatment
with mirtazapine or venlafaxine.
Pharmacopsychiatry.
2002;
35
220-225
MissingFormLabel
- 122
Pollmächer T, Hinze-Selch D, Mullington J.
Effects of clozapine on plasma cytokine and soluble cytokine receptor levels.
J Clin Psychopharmacol.
1996;
16
403-409
MissingFormLabel
- 123
Schuld A, Kraus T, Haack M. et al .
Plasma levels of cytokines and soluble cytokine receptors during treatment with olanzapine.
Schizophr Res.
2000;
43
164-166
MissingFormLabel
- 124
Maes M, Song C, Lin A H. et al .
In vitro immunoregulatory effects of lithium in healthy volunteers.
Psychopharmacology.
1999;
143
401-407
MissingFormLabel
- 125
Himmerich H, Koethe D, Schuld A. et al .
Plasma levels of leptin and endogenous immune modulators during treatment with carbamazepine
or lithium.
Psychopharmacology.
2005;
179
447-451
MissingFormLabel
- 126
Kraus T, Haack M, Schuld A. et al .
Body weight and leptin plasma levels during treatment with antipsychotic drugs.
Am J Psychiatry.
1999;
156
312-314
MissingFormLabel
- 127
Pollmächer T, Hinze-Selch D, Fenzel T. et al .
Plasma levels of cytokines and soluble cytokine receptors during treatment with haloperidol.
Am J Psychiatry.
1997;
154
1763-1765
MissingFormLabel
- 128
Brustolim D, Ribeiro-dos-Santos R, Kast R E. et al .
A new chapter opens in anti-inflammatory treatments: the antidepressant bupropion
lowers production of tumor necrosis factor-alpha and interferon-gamma in mice.
Int Immunopharmacol.
2006;
6
903-907
MissingFormLabel
- 129
Himmerich H, Schuld A, Haack M. et al .
Early prediction of changes in weight during six weeks of treatment with antidepressants.
J Psychiatr Res.
2004;
38
485-489
MissingFormLabel
- 130
Davis M.
Hepatotoxicity of antidepressants.
Int Clin Psychopharmacol.
1991;
6
97-103
MissingFormLabel
- 131
Selim K, Kaplowitz N.
Hepatotoxicity of psychotropic drugs.
Hepatology.
1999;
29
1347-1351
MissingFormLabel
- 132
Himmerich H, Kaufmann C, Schuld A. et al .
Elevation of liver enzyme levels during psychopharmacological treatment is associated
with weight gain.
J Psychiatr Res.
2005;
39
35-42
MissingFormLabel
- 133
Choi I, Kang H S, Yang Y. et al .
IL-6 induces hepatic inflammation and collagen synthesis in vivo.
Clin Exp Immunol.
1994;
95
530-535
MissingFormLabel
- 134
Ikejima K, Takei Y, Honda H. et al .
Leptin receptor-mediated signaling regulates hepatic fibrogenesis and remodeling of
extracellular matrix in the rat.
Gastroenterology.
2002;
122
1399-1410
MissingFormLabel
- 135
Tilg H.
Cytokines and liver diseases.
Can J Gastroenterol.
2001;
15
661-668
MissingFormLabel
- 136
Müller N, Schwarz M.
Schizophrenia as an inflammation-mediated dysbalance of glutamatergic neurotransmission.
Neurotox Res.
2006;
10
131-148
MissingFormLabel
- 137
Pollmächer T, Schuld A, Kraus T. et al .
Zur klinischen Relevanz der Wirkung von Clozapin auf die Freisetzung von Zytokinen
und löslichen Zytokinrezeptoren.
Fortschr Neurol Psychiatr.
2001;
69 (Suppl 2)
65-74
MissingFormLabel
- 138
Tyring S, Gottlieb A, Papp K. et al .
Etanercept and clinical outcomes, fatigue, and depression in psoriasis: double-blind
placebo-controlled randomised phase III trial.
Lancet.
2006;
367
29-35
MissingFormLabel
- 139
Uguz F, Akman C, Kucuksarac S. et al .
Anti-tumor necrosis factor-alpha therapy is associated with less frequent mood and
anxiety disorders in patients with rheumatoid arthritis.
Psychiatry Clin Neurosci.
2009;
63
50-55
MissingFormLabel
- 140
Ricart E, García-Bosch O, Ordás I. et al .
Are we giving biologics too late? The case for early versus late use.
World J Gastroenterol.
2008;
14
5523-5527
MissingFormLabel
- 141
Bongartz T, Sutton A J, Sweeting M J. et al .
Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections
and malignancies: systematic review and meta-analysis of rare harmful effects in randomized
controlled trials.
JAMA.
2006;
295
2275-2285
MissingFormLabel
- 142
Nasir A, Greenberg J D.
TNF antagonist safety in rheumatoid arthritis: updated evidence from observational
registries.
Bull NYU Hosp Jt Dis.
2007;
65
178-181
MissingFormLabel
- 143
Solomon D H, Karlson E W, Rimm E B. et al .
Cardiovascular morbidity and mortality in women diagnosed with rheumatoid arthritis.
Circulation.
2003;
107
1303-1307
MissingFormLabel
- 144
Wolfe F, Freundlich B, Straus W L.
Increase in cardiovascular and cerebrovascular disease prevalence in rheumatoid arthritis.
J Rheumatol.
2003;
30
36-40
MissingFormLabel
- 145
Efimov G A, Kruglov A A, Tillib S V. et al .
Tumor Necrosis Factor and the consequences of its ablation in vivo.
Mol Immunol.
2009;
Epub 19.2.2009
MissingFormLabel
- 146
Sperner-Unterweger B.
Biologische Hypothesen zur Schizophrenie: Mögliche Einflüsse von Immunologie und Endokrinologie.
Fortschr Neurol Psychiatr.
2005;
73 (Suppl 1)
38-43
MissingFormLabel
- 147
Fromont A, De Seze J, Fleury M C. et al .
Inflammatory demyelinating events following treatment with anti-tumor necrosis factor.
Cytokine.
2009;
45
55-57
MissingFormLabel
Prof. Dr. med. Hubertus Himmerich
Klinik und Poliklinik für Psychiatrie, Universitätsklinikum Leipzig, AöR
Semmelweisstraße 10
04107 Leipzig
eMail: Hubertus.Himmerich@medizin.uni-leipzig.de