Zusammenfassung
Die erhöhte Knochenresorption ist ein Hauptmerkmal des multiplen Myeloms und kann
die Lebensqualität der Patienten maßgeblich beeinträchtigen. Bei der überwiegenden
Mehrzahl der Myelompatienten sind Osteolysen festzustellen, die Schmerzen auslösen
und ein erhöhtes Frakturrisiko verursachen. Die Knochendestruktion entsteht beim multiplen
Myelom durch ein gestörtes Gleichgewicht der Aktivität der knochenaufbauenden Osteoblasten
und der knochenabbauenden Osteoklasten. Die zellulären Interaktionen sowie Dysregulation
von Zytokinen im Knochenmarkmikroenvironment sind an der Knochendestruktion beteiligt.
Die Behandlung mit Bisphosphonaten hemmt zwar die osteoklasteninduzierte Knochenresorption,
ist aber nicht in der Lage, die beim multiplen Myelom beobachtete Hemmung der Differenzierung
der mesenchymalen Stammzellen zu Osteoblasten auszugleichen. Bortezomib ist die wirksamste
Einzelsubstanz in der Therapie des multiplen Myeloms. Präklinische Untersuchungen
zeigen, dass der Proteasominhibitor Bortezomib darüber hinaus der myelominduzierten
Knochendestruktion entgegenwirken kann. Bortezomib hemmt einerseits die Osteoklastenaktivität
und fördert andererseits die Osteoblastenfunktion und weist somit Eigenschaften auf,
die für die Therapie der Knochenbeteiligung beim multiplen Myelom ideal erscheinen.
Bortezomib könnte somit nicht nur in der Behandlung gegen die Tumorzellen, sondern
auch in der Behandlung der Knochendestruktion eine wesentliche Rolle spielen. Klinische
Studien sind jedoch notwendig, um diese Effekte hinsichtlich ihrer klinischen Relevanz
zu untersuchen. Internationale prospektive klinische Studien wurden begonnen, um dies
in einem randomisierten Studiendesign zu untersuchen.
Abstract
Increased bone resorption is one of the main characteristics of multiple myeloma and
can considerably impair the quality of life of the patients. The vast majority of
myeloma patients have lytic bone lesions which lead to pain and an increased risk
of fractures. Bone destruction in multiple myeloma patients is caused by an imbalance
of the activity of bone-building osteoblasts and bone-resorbing osteoclasts. Cellular
interactions, as well as dysregulation of cytokines in the bone marrow microenvironment
are involved in bone destruction. Treatment with bisphosphonates inhibits osteoclast-induced
bone resorption, but it cannot compensate for the inhibited differentiation of mesenchymal
stem cells into osteoblasts observed in multiple myeloma patients. Bortezomib is the
most efficient single substance for the treatment of multiple myeloma. Preclinical
tests show that the proteasome inhibitor Bortezomib can furthermore counteract the
myeloma-induced bone destruction. On the one hand, Bortezomib inhibits osteoclast
activity and, on the other hand, promotes osteoblast function and thus has properties
that seem to be ideal for the therapy of bone disease in multiple myeloma patients.
Bortezomib might play an important part not only in the treatment against the tumour
cells, but also in the treatment of bone destruction. However, clinical studies have
to be carried out in order to examine these effects with a view to their clinical
relevance. International prospective randomized clinical trials have already been
started.
Schlüsselwörter
Bortezomib - Knochen - multiples Myelom - Osteoblasten - Osteoklasten - Proteasom
Key words
Bortezomib - bones - multiple myeloma - osteoblasts - osteoclasts - proteasome
Literatur
- 1
Sezer O.
Myeloma Bone Disease: Recent Advances in Biology, Diagnosis, and Treatment.
Oncologist.
2009;
14 (3)
276-283
- 2 Sezer O. Multiples Myelom und verwandte Plasmazellerkrankungen. Therapie-Handbuch. Elsevier-Verlag
2008
- 3
Richardson P G, Sonneveld P, Schuster M W. et al .
Bortezomib or high-dose dexamethasone for relapsed multiple myeloma.
N Engl J Med.
2005;
352 (24)
2487-2498
- 4
San Miguel J F, Schlag R, Khuageva N K. et al .
Bortezomib plus Melphalan and Prednisone for Initial Treatment of Multiple Myeloma.
N Engl J Med.
2008;
359 (9)
906-917
- 5
Jakob C, Egerer K, Liebisch P. et al .
Circulating proteasome levels are an independent prognostic factor for survival in
multiple myeloma.
Blood.
2007;
109 (5)
2100-2105
- 6
Garrett I R, Chen D, Gutierrez G. et al .
Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo
and in vitro.
The Journal of Clinical Investigation.
2003;
111
1771-1782
- 7
Zavrski I, Krebbel H, Wildemann B. et al .
Proteasome inhibitors abrogate osteoclast differentiation and osteoclast function.
Biochem Biophys Res Commun.
2005;
333 (1)
200-205
- 8
Coleman R E.
Skeletal complications of malignancy.
Cancer.
1997;
80 (Suppl 8)
1588-1594
- 9 Sezer O. Bisphosphonate beim Multiplen Myelom. Supportive Therapie in der Onkologie. Zuckschwerdt
Verlag 2008
- 10
Cocks K, Cohen D, Wisloff F. et al .
An international field study of the reliability and validity of a disease-specific
questionnaire module (the QLQ-MY20) in assessing the quality of life of patients with
multiple myeloma.
Eur J Cancer.
2007;
43 (11)
1670-1678
- 11
Jakob C, Sterz J, Liebisch P. et al .
Incorporation of the bone marker carboxy-terminal telopeptide of type-1 collagen improves
prognostic information of the International Staging System in newly diagnosed symptomatic
multiple myeloma.
Leukemia.
2008;
22 (9)
1767-1772
- 12
Sezer O, Heider U, Zavrski I. et al .
RANK ligand and osteoprotegerin in myeloma bone disease.
Blood.
2003;
101 (6)
2094-2098
- 13
Heider U, Fleissner C, Zavrski I. et al .
Bone markers in multiple myeloma.
Eur J Cancer.
2006;
42 (11)
1544-1553
- 14
Lentzsch S, Ehrlich L A, Roodman G D.
Pathophysiology of multiple myeloma bone disease.
Hematol Oncol Clin North Am.
2007;
21 (6)
1035-49, viii
- 15
Hideshima T, Mitsiades C S, Tonon G. et al .
Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic
targets.
Nature Reviews Cancer.
2007;
7
585-598
- 16
Heider U, Langelotz C, Jakob C. et al .
Expression of receptor activator of nuclear factor kappaB ligand on bone marrow plasma
cells correlates with osteolytic bone disease in patients with multiple myeloma.
Clin Cancer Res.
2003;
9 (4)
1436-1440
- 17
Heider U, Hofbauer L C, Zavrski I. et al .
Novel aspects of osteoclast activation and osteoblast inhibition in myeloma bone disease.
Biochem Biophys Res Commun.
2005;
338 (2)
687-693
- 18
Yaccoby S, Pearse R N, Johnson C L. et al .
Myeloma interacts with the bone marrow microenvironment to induce osteoclastogenesis
and is dependent on osteoclast activity.
Br J Haematol.
2002;
116 (2)
278-290
- 19
Hecht M, Metzler von I, Sack K. et al .
Interactions of myeloma cells with osteoclasts promote tumour expansion and bone degradation
through activation of a complex signalling network and upregulation of cathepsin K,
matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA).
Exp Cell Res.
2008;
314 (5)
1082-1093
- 20
Bataille R, Chappard D, Marcelli C. et al .
Recruitment of new osteoblasts and osteoclasts is the earliest critical event in the
pathogenesis of human multiple myeloma.
J Clin Invest.
1991;
88 (1)
62-66
- 21
Hecht M, Heider U, Kaiser M. et al .
Osteoblasts promote migration and invasion of myeloma cells through upregulation of
matrix metalloproteinases, urokinase plasminogen activator, hepatocyte growth factor
and activation of p38 MAPK.
Br J Haematol.
2007;
138 (4)
446-458
- 22
Tian E, Zhan F, Walker R. et al .
The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions
in multiple myeloma.
N Engl J Med.
2003;
349 (26)
2483-2494
- 23
Kaiser M, Mieth M, Liebisch P. et al .
Serum concentrations of DKK-1 correlate with the extent of bone disease in patients
with multiple myeloma.
Eur J Haematol.
2008;
80 (6)
490-494
- 24
Yaccoby S, Ling W, Zhan F. et al .
Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple
myeloma growth in vivo.
Blood.
2007;
109 (5)
2106-2111
- 25
Giuliani N, Rizzoli V, Roodman G D.
Multiple myeloma bone disease: pathophysiology of osteoblast inhibition.
Blood.
2006;
108
3992-3996
- 26
Moulopoulos L A, Dimopoulos M A, Smith T L. et al .
Prognostic significance of magnetic resonance imaging in patients with asymptomatic
multiple myeloma.
J Clin Oncol.
1995;
13 (1)
251-256
- 27
Walker R, Barlogie B, Haessler J. et al .
Magnetic resonance imaging in multiple myeloma: diagnostic and clinical implications.
J Clin Oncol.
2007;
25 (9)
1121-1128
- 28
Jakob C, Zavrski I, Heider U. et al .
Bone resorption parameters [carboxy-terminal telopeptide of type-I collagen (ICTP),
amino-terminal collagen type-I telopeptide (NTx), and deoxypyridinoline (Dpd)] in
MGUS and multiple myeloma.
Eur J Haematol.
2002;
69 (1)
37-42
- 29
Yeh H S, Berenson J R.
Treatment for myeloma bone disease.
Clin Cancer Res.
2006;
12 (20 Pt 2)
6279 s-6284 s
- 30
Coleman R E, Major P, Lipton A. et al .
Predictive value of bone resorption and formation markers in cancer patients with
bone metastases receiving the bisphosphonate zoledronic acid.
J Clin Oncol.
2005;
23 (22)
4925-4935
- 31
Bamias A, Kastritis E, Bamia C. et al .
Osteonecrosis of the jaw in cancer after treatment with bisphosphonates: incidence
and risk factors.
J Clin Oncol.
2005;
23 (34)
8580-8587
- 32
Ripamonti C I, Maniezzo M, Campa T. et al .
Decreased occurrence of osteonecrosis of the jaw after implementation of dental preventive
measures in solid tumour patients with bone metastases treated with bisphosphonates.
The experience of the National Cancer Institute of Milan.
Ann Oncol.
2009;
20 (1)
137-145
- 33
Heider U, Kaiser M, Muller C. et al .
Bortezomib increases osteoblast activity in myeloma patients irrespective of response
to treatment.
Eur J Haematol.
2006;
77 (3)
233-238
- 34
Giuliani N, Morandi F, Tagliaferri S. et al .
The proteasome inhibitor bortezomib affects osteoblast differentiation in vitro and
in vivo in multiple myeloma patients.
Blood.
2007;
110 (1)
334-338
- 35
Terpos E, Dimopoulos M A, Sezer O.
The effect of novel anti-myeloma agents on bone metabolism of patients with multiple
myeloma.
Leukemia.
2007;
21 (9)
1875-1884
- 36
Terpos E, Sezer O, Croucher P. et al .
Myeloma bone disease and proteasome inhibition therapies.
Blood.
2007;
110 (4)
1098-1104
- 37
Metzler von I, Krebbel H, Hecht M. et al .
Bortezomib inhibits human osteoclastogenesis.
Leukemia.
2007;
21 (9)
2025-2034
- 38
Boissy P, Andersen T L, Lund T. et al .
Pulse treatment with the proteasome inhibitor bortezomib inhibits osteoclast resorptive
activity in clinically relevant conditions.
Leuk Res.
2008;
32 (11)
1661-1668
- 39
Roodman G D.
Bone building with bortezomib.
J Clin Invest.
2008;
118 (2)
462-464
- 40
Uy G L, Trivedi R, Peles S. et al .
Bortezomib inhibits osteoclast activity in patients with multiple myeloma.
Clin Lymphoma Myeloma.
2007;
7 (9)
587-589
- 41
Terpos E, Heath D J, Rahemtulla A. et al .
Bortezomib reduces serum dickkopf-1 and receptor activator of nuclear factor-kappaB
ligand concentrations and normalises indices of bone remodelling in patients with
relapsed multiple myeloma.
Br J Haematol.
2006;
135 (5)
688-692
- 42 Terpos E, Delimpasi S, Anargyrou K. et al .The Combination of Bortezomib, Doxorubicin,
and Dexamethasone (PAD) Is an Effective Regimen for High Risk, Newly Diagnosed, Patients
with Multiple Myeloma, Reduces Bone Resorption and Normalizes Angiopoietin-1 to Angiopoietin-2
Ratio. ASH Annual Meeting Abstracts 110[11] 16.11.2007: 3596.
- 43
Terpos E, Kastritis E, Roussou M. et al .
The combination of bortezomib, melphalan, dexamethasone and intermittent thalidomide
is an effective regimen for relapsed/refractory myeloma and is associated with improvement
of abnormal bone metabolism and angiogenesis.
Leukemia.
2008;
22 (12)
2247-2256
- 44
Oyajobi B O, Garrett I R, Gupta A. et al .
Stimulation of new bone formation by the proteasome inhibitor, bortezomib: implications
for myeloma bone disease.
Br J Haematol.
2007;
139 (3)
434-438
- 45
Mukherjee S, Raje N, Schoonmaker J A. et al .
Pharmacologic targeting of a stem/progenitor population in vivo is associated with
enhanced bone regeneration in mice.
J Clin Invest.
2008;
118 (2)
491-504
- 46
Yaccoby S, Wezeman M J, Zangari M. et al .
Inhibitory effects of osteoblasts and increased bone formation on myeloma in novel
culture systems and a myelomatous mouse model.
Haematologica.
2006;
91 (2)
192-199
- 47
Pennisi A, Li X, Ling W. et al .
The proteasome inhibitor, bortezomib suppresses primary myeloma and stimulates bone
formation in myelomatous and nonmyelomatous bones in vivo.
Am J Hematol.
2009;
84 (1)
6-14
- 48
Weinstein R S, Jilka R L, Parfitt A M. et al .
Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes
by glucocorticoids. Potential mechanisms of their deleterious effects on bone.
J Clin Invest.
1998;
102 (2)
274-282
- 49
Ohnaka K, Tanabe M, Kawate H. et al .
Glucocorticoid suppresses the canonical Wnt signal in cultured human osteoblasts.
Biochem Biophys Res Commun.
2005;
329 (1)
177-181
- 50 Soe K, Andersen T L, Kupisiewicz K. et al .Bortezomib Protects Osteoblasts from
Glucocorticoid-Induced Damage, and Enhances Glucocorticoid-Induced Toxicity Against
Osteoclasts and Myeloma Cells. ASH Annual Meeting Abstracts 11 0[11] Ref Type: Abstract
16.11.2007: 3523
- 51
Shimazaki C, Uchida R, Nakano S. et al .
High serum bone-specific alkaline phosphatase level after bortezomib-combined therapy
in refractory multiple myeloma: possible role of bortezomib on osteoblast differentiation.
Leukemia.
2005;
19 (6)
1102-1103
- 52
Zangari M, Esseltine D, Lee C K. et al .
Response to bortezomib is associated to osteoblastic activation in patients with multiple
myeloma.
Br J Haematol.
2005;
131 (1)
71-73
- 53
Zangari M, Esseltine D, Cavallo F. et al .
Predictive value of alkaline phosphatase for response and time to progression in bortezomib-treated
multiple myeloma patients.
Am J Hematol.
2007;
82 (9)
831-833
- 54
Ozaki S, Tanaka O, Fujii S. et al .
Therapy with bortezomib plus dexamethasone induces osteoblast activation in responsive
patients with multiple myeloma.
Int J Hematol.
2007;
86 (2)
180-185
- 55 Zangari M, Cavallo F, Suva L. et al .Prospective Evaluation of the Bone Anabolic
Effect of Bortezomib in Relapsed Multiple Myeloma (MM) Patients. ASH Annual Meeting
Abstracts 11 0[11] 16.11.2007: 2719
Prof. Dr. Orhan Sezer
Hämatologie und Onkologie, Charité – Universitätsmedizin Berlin
Charitéplatz 1
10117 Berlin
Phone: ++ 49/30/4 50 61 31 05
Fax: ++ 49/30/4 50 52 79 07
Email: sezer@charite.de