Zusammenfassung
Aus verschiedenen Gründen läuft eine beträchtliche Anzahl von Läufern bei geringer und moderater Geschwindigkeit mit einem Vorfußkontaktlaufmuster, obwohl die menschliche Ferse beim Walken und langsamen Laufen anatomisch für die Fersenlandung „designt” zu sein scheint.
Die vorliegende Ex-post-facto-Forschungsarbeit untersuchte die bilaterale Aktivität von M. transversus abdominis und M. multifidus, um Hinweise auf die Rumpfstabilität beim Rückfuß- versus Vorfußkontaktlaufmuster zu finden.
Bei 12 weiblichen Freizeitläufern (je 6 Vorfuß- und Rückfußkontaktläufer) mit gleichem Gewicht, Größe, Alter und Lauferfahrung wurden während Laufbandjoggen mit definierten Geschwindigkeiten bilaterale oberflächliche EMG-Daten des M. transversus abdominis und M. multifidus gesammelt. Außerdem wurden die IEMG-Werte zwischen Muskeleinsatz und initialem Kontakt (Feedforward) quantifiziert. Das Rechts-/Links-Verhältnis dieser Werte wurde berechnet und analysiert.
Laut der aktuellen Literatur wird empfohlen, bei geringen und moderaten Geschwindigkeiten mit einem Rückfußkontaktmuster zu laufen. Die in der vorliegenden Studie festgestellte symmetrischere Aktivierung des M. transversus abdominis könnte auf eine bessere Rumpfstabilität beim Rückfußkontaktlaufmuster bei den untersuchten Geschwindigkeiten hindeuten.
Abstract
For several reasons a considerable percentage of runners run at low and moderated speeds in a forefoot strike running pattern although the human heel seems to be anatomically ”designed” for heel landing in walking and low speed running.
This ex post facto research examined bilateral activity of the transversus abdominis and multifidus in order to find indications concerning core stability in a rear foot versus a forefoot strike running pattern.
In 12 female recreational runners (6 forefoot and rear foot strikers each) with equal weight, height, age and running experience bilateral surface EMG data from the transversus abdominis muscle and multifidus were collected during treadmill running at a predefined running speed time. In addition, IEMG values were quantified between muscle onset and initial contact (feed forward). The left to right proportions of these values were estimated and analysed.
Current literature indicates that it is advisable to adapt a rear foot strike running pattern at low and moderate speeds. This study found more symmetrical activation of the transversus abdominis muscle in the rear foot strike group which might indicate a better core stability for the investigated speeds.
Schlüsselwörter
Laufen - Laufmuster - M. transversus abdominis - M. multifidus - Muskelaktivität
Key words
running - running pattern - transversus abdominis muscle - multifidus muscle - muscle activity
Literatur
1
Ardigo L P, Lafortuna C, Minetti A E. et al .
Metabolic and mechanical aspects of foot landing type, forefoot and rearfoot strike, in human running.
Acta Physiol Scand.
1995;
155
17-22
2
Barr K P, Griggs M, Cadby T.
Lumbar stabilization: core concepts and current literature, Part 1.
Am J Phys Med Rehabil.
2005;
84
473-480
3 Boyling G J, Jull G. Grieve’s Modern Manual Therapy. The Vertebral Column. New York; Elsevier 2005
4
Bramble D M, Lieberman D E.
Endurance running and the evolution of Homo.
Nature.
2004;
18
345-352
5 Brüggemann G P. Impact biomechanics and joint loading in running. 12th Annual Congress of the ECCS, Jyväskylä/Finland, 11.–14.7.2007.
6
Brunet M E, Cook S D, Brinker M R. et al .
A survey of running injuries in 1505 competitive and recreational runners.
J Sports Med Phys Fitness.
1990;
30
307-315
7
Cai L L, Courtine G, Fong A J. et al .
Plasticity of functional connectivity in the adult spinal cord.
Philos Trans R Soc Lond B Biol Sci.
2006;
361
1635-1646
8
Cavanagh P R, Lafortune M A.
Ground reaction forces in distance running.
J Biomech.
1980;
13
397-406
9 Cavanagh P R. Forces and pressures between the foot and the floor during normal walking and running. Biomechanics Symposium Indianapolis; 1981: 172-190
10
Cholewicki J, Panjabi M M, Khachatryan A.
Stabilizing function of trunk flexor-extensor muscles around a neutral spine posture.
Spine.
1997;
22
2207-2212
11
Comerford M J, Mottram S L.
Functional stability re-training: principles and strategies for managing mechanical dysfunction.
Man Ther.
2001;
6
3-14
12
Cresswell A G, Oddsson L, Thorstensson A.
The influence of sudden perturbations on trunk muscle activity and intra-abdominal pressure while standing.
Exp Brain Res.
1994;
98
336-341
13
DeVita P.
The selection of a standard convention for analyzing gait data based on the analysis of relevant biomechanical factors.
J Biomech.
1994;
27
501-508
14
Dimitrijevic M R, Gerasimenko Y, Pinter M M.
Evidence for a spinal central pattern generator in humans.
Ann N Y Acad Sci.
1998;
860
360-376
15
Dugan S A, Bhat K P.
Biomechanics and analysis of running gait.
Phys Med Rehabil Clin N Am.
2005;
16
603-621
16
Ebenbichler G R, Oddsson L I, Kollmitzer J. et al .
Sensory-motor control of the lower back: implications for rehabilitation.
Med Sci Sports Exerc.
2001;
33
1889-1898
17
El-Rich M, Shirazi-Adl A, Arjmand N.
Muscle activity, internal loads, and stability of the human spine in standing postures: combined model and in vivo studies.
Spine.
2004;
29
2633-2642
18
Giddings V L, Beaupre G S, Whalen R T. et al .
Calcaneal loading during walking and running.
Med Sci Sports Exerc.
2000;
32
627-634
19
Harkema S J, Hurley S L, Patel U K. et al .
Human lumbosacral spinal cord interprets loading during stepping.
J Neurophysiol.
1997;
77
797-811
20
Hasegawa H, Yamauchi T, Kraemer W J.
Foot strike patterns of runners at the 15-km point during an elite-level half marathon.
J Strength Cond Res.
2007;
21
888-893
21 Hermens H J. European Recommendations for Surface Electromyography Results of the Seniam Project (SENIAM). Enschede; Roessingh Research and Development 1999
22
Hides J A, Jull G A, Richardson C A.
Long-term effects of specific stabilizing exercises for first-episode low back pain.
Spine.
2001;
26
E243-E248
23
Hodges P W, Bui B H.
A comparison of computer-based methods for the determination of onset of muscle contraction using electromyography.
Electroencephalogr Clin Neurophysiol.
1996;
101
511-519
24
Hodges P W, Richardson C A.
Inefficient muscular stabilization of the lumbar spine associated with low back pain. A motor control evaluation of transversus abdominis.
Spine.
1996;
21
2640-2650
25
Hodges P, Cresswell A, Thorstensson A.
Preparatory trunk motion accompanies rapid upper limb movement.
Exp Brain Res.
1999;
124
69-79
26
Hooper S L.
Central pattern generators.
Curr Biol.
2000;
10
R176
27
Keller T S, Weisberger A M, Ray J L. et al .
Relationship between vertical ground reaction force and speed during walking, slow jogging, and running.
Clin Biomech (Bristol, Avon).
1996;
11
253-259
28 Kendall Peterson F, Kendall McCreary E, Geise Provance P. Muskeln – Funktionen und Tests. München; Urban & Fischer 2001
29 Kerr B A BL, Fisher V, Neil R. Footstrike patterns in distance running. Nigg BM KB Biomechanical aspects of sport shoes and playing surfaces Calgary; University of Calgary 1983
30 Lamprecht M FA, Stamm H P. Das Sportverhalten der Schweizer Bevölkerung. Magglingen; Sozialforschung & Beratung AG 2008
31
Laughton C A, McClay D avis I, Hamill J.
Effect of strike pattern and orthotic intervention on tibial shock during running.
Journal of Applied Biomechanics.
2003;
19
153-168
32
Leetun D T, Ireland M L, Willson J D. et al .
Core stability measures as risk factors for lower extremity injury in athletes.
Med Sci Sports Exerc.
2004;
36
926-934
33
Marshall P, Murphy B.
The validity and reliability of surface EMG to assess the neuromuscular response of the abdominal muscles to rapid limb movement.
J Electromyogr Kinesiol.
2003;
13
477-489
34 Marti B, Hättich A. Bewegung – Sport – Gesundheit. Epidemiologisches Kompendium. Bern; Haupt 1999
35 McClay I. Lower extremity kinematic comparisons between forefoot and rearfoot striker. 19th Annual Meeting of the ASB,. Palo Alto; 1995: 211-212
36 McClay I, Williams D. Lower extremity mechanics in a converted forefoot strike pattern in runners. North American Congress on Biomechanics,. Waterloo/Canada; 1998
37
McGill S, Juker D, Kropf P.
Appropriately placed surface EMG electrodes reflect deep muscle activity (psoas, quadratus lumborum, abdominal wall) in the lumbar spine.
J Biomech.
1996;
29
1503-1507
38
McGill S M, Cholewicki J.
Biomechanical basis for stability: an explanation to enhance clinical utility.
J Orthop Sports Phys Ther.
2001;
31
96-100
39
Moseley G L, Hodges P W, Gandevia S C.
Deep and superficial fibers of the lumbar multifidus muscle are differentially active during voluntary arm movements.
Spine.
2002;
27
E29-E36
40
Munro C F, Miller D I, Fuglevand A J.
Ground reaction forces in running: a reexamination.
J Biomech.
1987;
20
147-155
41
Nigg B M.
GKCG-PBBM. Impact Forces during Heel-Toe Running.
Journal of Applied Biomechanics.
1995;
11
407-432
42
Nigg B M.
The role of impact forces and foot pronation: a new paradigm.
Clin J Sport Med.
2001;
11
2-9
43 Nigg B M. Footwear research – past, present and future. 7th Symposium on Footwear Biomechanics,. Cleveland/Ohio; July 27 – 29; 2005
44 Nigg B M, Herzog W. Biomechanics of the Musculo-Skeletal System. New York; Wiley 2007
45
Novacheck T F.
The biomechanics of running.
Gait Posture.
1998;
1
77-95
46
Panjabi M, Abumi K, Duranceau J. et al .
Spinal stability and intersegmental muscle forces. A biomechanical model.
Spine.
1989;
14
194-200
47
Pool-Goudzwaard A L, Vleeming A, Stoeckart R. et al .
Insufficient lumbopelvic stability: a clinical, anatomical and biomechanical approach to ”a-specific” low back pain.
Man Ther.
1998;
3
12-20
48
Richardson C A, Snijders C J. et al .
The relation between the transversus abdominis muscles, sacroiliac joint mechanics, and low back pain.
Spine.
2002;
27
399-405
49 Richardson C A, Hides J. Therapeutic exercise for lumbopelvic stabilisation. Edinburgh; Churchill Livingstone 2004
50
Rist H J, Kälina X, Weisskopf L.
Increased Frequency of Plantar Fasciosis in Forefoot Running.
Sports Orthopaedics and Traumatology.
2007;
23
57-62
51
Schache A G, Bennell K L, Blanch P D. et al .
The coordinated movement of the lumbo-pelvic-hip complex during running: a literature review.
Gait Posture.
1999;
10
30-47
52
Schache A G, Blanch P, Rath D. et al .
Three-dimensional angular kinematics of the lumbar spine and pelvis during running.
Hum Mov Sci.
2002;
21
273-293
53 Steffny H. Das große Laufbuch. München; Südwestverlag 2004
54
Valiant G A, Cavanagh P R.
An in vivo determination of the mechanical characteristics of the human heel pad.
Journal of Biomechanics.
1985;
18
242
55
Wilke H J, Wolf S, Claes L E. et al .
Stability increase of the lumbar spine with different muscle groups. A biomechanical in vitro study.
Spine.
1995;
20
192-198
56
Yang J F, Gorassini M.
Spinal and brain control of human walking: implications for retraining of walking.
Neuroscientist.
2006;
12
379-389
Jan Swager van Dok
MSc, B.PT, PT OMTsvomp
Kirchstr. 1
2540 Grenchen, Schweiz
Email: Jdok@besonet.ch