Subscribe to RSS
DOI: 10.1055/s-0028-1109882
© Georg Thieme Verlag KG Stuttgart · New York
Adjustable Cerebrospinal Fluid Shunt Valves in 3.0-Tesla MRI: a Phantom Study using Explanted Devices
Verstellbare Hydrozephalus-Shuntventile im 3,0 Tesla-MRT: Phantommessungen an explantierten VentilenPublication History
                     received: 14.10.2009
                     
                     accepted: 16.10.2009
                     
Publication Date:
02 December 2009 (online)

Zusammenfassung
Ziel: Die Zahl klinischer Hochfeld-MR-Tomografen nimmt stark zu. Es liegen nur wenige Daten zu Wechselwirkungen zwischen Magneten von 3,0 Tesla-Feldstärke und magnetisch einstellbaren Hydrozephalus-Shunt-Ventilen vor. Diese wurden ausschließlich an fabrikneuen Ventilen erhoben; die Aussagekraft für In-vivo-Bedingungen ist daher eingeschränkt. In dieser Studie am Messphantom wurden explantierte Ventile als realistischeres Modell verwendet, um die sicherheitsrelevante Funktionalität der Ventile zu prüfen und um Bildgebungsartefakte, Scherkräfte und Erhitzung der metallischen Implantate systematisch zu erfassen. Material und Methoden: 16 explantierte Codman-Medos- und Sophy-SU8-Shunt-Ventile, alle funktionstüchtig, wurden dem statischen Magnetfeld des 3,0 T MRT-Geräts ausgesetzt. Die Artefakt- und Auslöschungsuntersuchung als auch die Erwärmungsuntersuchung wurden unter Verwendung von standardisierten diagnostischen MR-Sequenzen mit unterschiedlichen SAR-Werten durchgeführt. Die translatorische Anziehungskraft für die verstellbaren Ventile wurde anhand des Ablenkungs-Winkel-Tests bestimmt. Um die Verstellbarkeit und die Funktion der Ventile zu testen, wurde das sphärische Phantom mit dem Ventil ins Isocenter des MR-Geräts platziert und dem statischen Magnetfeld des 3,0 T für 0,25 bis zu 12 h (wiederholte Exposition: 1- bis 12-mal) einschließlich der Ein- und Ausfahrprozeduren ausgesetzt. Ergebnisse: Der Durchmesser der MRT-Artefakte betrug 10 – 70 mm und waren besonders ausgeprägt in T 2*w-Sequenzen. Eine durch das MRT induzierte relevante Erwärmung der Ventile ergab sich nicht. Die auf das Ventil wirkenden magnetischen Kräfte waren im Normbereich. Reproduzierbare Einstellungsfehler wurden bei 6 Ventilen festgestellt. Schlussfolgerung: Bis Empfehlungen bezüglich Untersuchungen von Hydrozephalus-Patienten in 3,0T-MRT möglich sind, sind größer angelegten Studien notwendig.
Abstract
Purpose: Considering the rapidly increasing number of clinical high-field MR imagers and the lack of data regarding interference with magnetically adjustable cerebrospinal fluid (CSF) shunt valves, valve safety was assessed with regard to magnetic field interactions: imaging artifacts, heating, magnetic forces, and functional changes in a phantom study at 3.0 Tesla using explanted devices as a realistic model for in vivo conditions. Materials and Methods: Sixteen explanted Codman-Medos and Sophy-SU8 shunt valves, all in perfect working order, were selected and exposed to a 3.0 T static magnetic field. Valve-induced imaging artifacts and signal drop-outs and the heating experiments were evaluated using standard diagnostic MR sequences with different SAR values. Translational attraction for the adjustable valves was assessed using the deflection angle method. To test adjustability and function, the spherical phantom containing the valve was placed in the isocenter of the MR scanner and exposed to a static magnetic field of 3.0 T for 0.25 to 12 hours (repeated exposure 1 – 12 times), including typical entrance and move-out procedures. Results: The diameters of imaging artifacts ranged from 10 – 70 mm and were most prominent on T 2*w sequences. There was no relevant MR-imaging-related heating. Magnetic forces were not critical. Reproducible adjustment failures occurred in 6 valves. Conclusion: Until suggestions can be made concerning the exposure of hydrocephalic patients to 3.0T-MRI, further testing is necessary.
Key words
adjustable cerebrospinal fluid shunt valves - Codman-Medos valves - hydrocephalus - 3.0-T MRI - failure of adjustability
References
- 1 
            Kalousdian S, Karlan M S, Williams M A. 
            Silicone elastomer cerebrospinal fluid shunt systems. Council on Scientific Affairs,
            American Medical Association. 
            Neurosurgery. 
            1998; 
            42 
            887-892 
            
            Reference Ris Wihthout Link
- 2 Medical Data International (3 / 1996) .U. S. markets for neurointerventional, neuroradiology and less-invasive neurosurgery
            products. #RP 891 234; 1995 – 2000,. CA, USA; Invine 
            Reference Ris Wihthout Link
- 3 
            Bondurant C P, Jimenez D F. 
            Epidemiology of cerebrospinal fluid shunting. 
            Pediatr Neurosurg. 
            1995; 
            23 
            254-258 
            
            Reference Ris Wihthout Link
- 4 
            Hoglund M, Tisell M, Wikkelso C. 
            Incidence of surgery for hydrocephalus in adults surveyed: same number afflicted by
            hydrocephalus as by multiple sclerosis. 
            Lakartidningen. 
            2001; 
            98 
            1681-1685 
            
            Reference Ris Wihthout Link
- 5 
            Del Bigio M R. 
            Epidemiology and direct economic impact of hydrocephalus: a community based study. 
            Can J Neurol Sci. 
            1998; 
            25 
            123-126 
            
            Reference Ris Wihthout Link
- 6 
            Cochrane D D, Kestle J. 
            Ventricular shunting for hydrocephalus in children: patients, procedures, surgeons
            and institutions in English Canada, 1989 – 2001. 
            Eur J Pediatr Surg. 
            2002; 
            12 
            S6-S11 
            
            Reference Ris Wihthout Link
- 7 
            Patwardhan R V, Nanda A. 
            Implanted ventricular shunts in the United States: the billion-dollar-a-year cost
            of hydrocephalus treatment. 
            Neurosurgery. 
            2005; 
            56 
            139-144 
            
            Reference Ris Wihthout Link
- 8 
            Zemack G, Romner B. 
            Seven years of clinical experience with the programmable Codman Hakim valve: a retrospective
            analysis of 583 patients. 
            J Neurosurg. 
            2000; 
            92 
            941-948 
            
            Reference Ris Wihthout Link
- 9 
            Miyake H, Ohta T, Kajimoto Y. et al .
            A clinical survey of hydrocephalus and current treatment for hydrocephalus in Japan:
            analysis by nationwide questionnaire. 
            Childs Nerv Syst. 
            1999; 
            15 
            363-368 
            
            Reference Ris Wihthout Link
- 10 
            Rohde V, Mayfrank L, Ramakers V T. et al .
            Four-year experience with the routine use of the programmable Hakim valve in the management
            of children with hydrocephalus. 
            Acta Neurochir. 
            1998; 
            140 
            1127-1134 
            
            Reference Ris Wihthout Link
- 11 
            Vanneste J A. 
            Diagnosis and management of normal-pressure hydrocephalus. 
            J Neurol. 
            2000; 
            247 
            5-14 
            
            Reference Ris Wihthout Link
- 12 Joseph P Hornak. The Basic of MRI. Rochester Institute of Technology, Magnetic Resonance Laboratory,
            Rochester, NY, 1996 – 2007. Accessed August 18, 2007 http://www.cis.rit.edu/htbook/mri 
            Reference Ris Wihthout Link
- 13 
            Baudendistel K T, Heverhagen J T, Knopp M V. 
            Klinisches MRT bei 3 Tesla: Aktueller Stand. 
            Radiologe. 
            2004; 
            44 
            11-18 
            
            Reference Ris Wihthout Link
- 14 
            Bernstein M A, Huston 3 rd J, Lin C. et al .
            High-resolution intracranial and cervical MRA at 3.0T: technical considerations and
            initial experience. 
            Magn Reson Med. 
            2001; 
            46 
            955-962 
            
            Reference Ris Wihthout Link
- 15 
            Campeau N G, Huston 3 rd J, Bernstein M A. et al .
            Magnetic resonance angiography at 3.0 Tesla: initial clinical experience. 
            Top Magn Reson Imaging. 
            2001; 
            12 
            183-204 
            
            Reference Ris Wihthout Link
- 16 
            Thulborn K R. 
            Clinical rationale for very-high-field (3.0T) functional magnetic resonance imaging. 
            Top Magn Reson Imaging. 
            1999; 
            10 
            37-50 
            
            Reference Ris Wihthout Link
- 17 
            Scarabino T, Nemore F, Giannatempo G M. et al .
            3.0T magnetic resonance in neuroradiology. 
            Eur Radiol. 
            2003; 
            48 
            154-164 
            
            Reference Ris Wihthout Link
- 18 
            Regier M, Nolte-Ernsting C, Adam G. et al .
            Intraindividual comparison of image quality in MR urography at 1.5 and 3 tesla in
            an animal model. 
            Röntgenstr Fortschr. 
            2008; 
            180 
            915-921 
            
            Reference Ris Wihthout Link
- 19 
            Rohr A, Riedel C, Reimann G. et al .
            Pseudotumor cerebri: quantitative in-vivo measurements of markers of intracranial
            hypertension. 
            Röntgenstr Fortschr. 
            2008; 
            180 
            884-890, German 
            
            Reference Ris Wihthout Link
- 20 
            Horger M, Schulze M, Mroue A. et al .
            Radiologic imaging of primary CNS lymphomas. 
            Röntgenstr Fortschr. 
            2008; 
            180 
            863-866, German, no abstract available 
            
            Reference Ris Wihthout Link
- 21 
            Mönninghoff C, Maderwald S, Theysohn J M. et al .
            Evaluation of intracranial aneurysms with 7T versus 1.5T time-of-flight MR angiography
            – initial experience. 
            Röntgenstr Fortschr. 
            2009; 
            181 
            16-23 
            
            Reference Ris Wihthout Link
- 22 
            Shellock F G, Crues J V. 
            MR procedures: biologic effects, safety, and patient care. 
            Radiology. 
            2004; 
            232 
            635-652 
            
            Reference Ris Wihthout Link
- 23 
            Schmitt F, Grosu D, Purdy D. 
            3 Tesla-MRT: Der Erfolg höherer Feldstärken. 
            Radiologe. 
            2004; 
            44 
            31-48 
            
            Reference Ris Wihthout Link
- 24 
            Biller A, Bartsch A, Knaus C. et al .
            Neuroradiologische Diagnostik bei Patienten mit sensorineuralem Hörverlust vor Cochlea-Implantation. 
            Röntgenstr Fortschr. 
            2007; 
            179 
            901-913 
            
            Reference Ris Wihthout Link
- 25 
            Shellock F G, Wilson S F, Mauge C P. 
            Magnetically programmable shunt valve: MRI at 3-Tesla. 
            Magn Reson Imaging. 
            2007; 
            25 
            1116-121 
            
            Reference Ris Wihthout Link
- 26 
            Akbar M, Stippich C, Aschoff A. 
            Magnetic resonance imaging and cerebrospinal fluid shunt valves. 
            N Engl J Med. 
            2005; 
            353 
            1413-1414 
            
            Reference Ris Wihthout Link
- 27 
            Ortler M, Kostron H, Felber S. 
            Transcutaneous pressure-adjustable valves and magnetic resonance imaging: an ex vivo
            examination of the Codman-Medos programmable valve and the Sophy adjustable pressure
            valve. 
            Neurosurgery. 
            1997; 
            40 
            1050-1057 
            
            Reference Ris Wihthout Link
- 28 
            Fransen P, Dooms G, Thauvoy C. 
            Safety of the adjustable pressure ventricular valve in magnetic resonance imaging:
            problems and solutions. 
            Neuroradiology. 
            1992; 
            34 
            508-509 
            
            Reference Ris Wihthout Link
- 29 
            Fransen P. 
            Transcutaneous pressure-adjustable valves and magnetic resonance imaging: an ex vivo
            examination of the Codman-Medos programmable valve and the Sophy adjustable pressure
            valve. 
            Neurosurgery. 
            1998; 
            42 
            430 
            
            Reference Ris Wihthout Link
- 30 
            Shellock F G, Habibi R, Knebel J. 
            Programmable CSF Shunt Valve, in vitro assessment of MR imaging safety at 3 T. 
            AJNR Am J Neuroradiol. 
            2006; 
            27 
            661-665 
            
            Reference Ris Wihthout Link
- 31 Shellock F G. Reference manual for magnetic resonance safety, implants, and devices. Los Angeles (CA); Biomedical Research Publishing Group 2006 
            Reference Ris Wihthout Link
- 32 Cosman E R. Radiofrequency lesions. Gildenberg PL, Tasker RR Textbook of stereotactic and functional neurosurgery New York; McGraw-Hill 1998 
            Reference Ris Wihthout Link
- 33 International standard: neurosurgical implants – sterile, single-use hydrocephalus
            shunts and components. ISO 7197: 1989 (E) TC 150 /SC3-N 86. Geneva; International Organization of Standardization 1994 
            Reference Ris Wihthout Link
- 34 Standard practice for evaluation and specifying implantable shunt assemblies for neurosurgical
            application. Proposed revision of standard draft. West Conshohocken, Pa; American Society of Testing and Materials 1992 
            Reference Ris Wihthout Link
- 35 
            Shellock F G, Gounis M, Wakhloo A. 
            Detachable coil for cerebral aneurysms: in vitro evaluation of magnet field interactions,
            heating, and artifacts at 3-Tesla. 
            AJNR Am J Neuroradiol. 
            2005; 
            26 
            363-366 
            
            Reference Ris Wihthout Link
- 36 American Society for Testing and Materials (ASTM) International: F 2182 – 02 .Test method for measurement of radio-frequency induced heating near passive implants
            during magnetic resonance imaging. Annual Book of ASTM Standards: Medical Devices
            and Services. Vol. 13.01. West Conshohocken, Pa; American Society for Testing and Materials 2003 
            Reference Ris Wihthout Link
- 37 
            Shellock F G. 
            Thermal responses in human subjects exposed to magnetic resonance imaging. 
            Ann N Y Acad Sci. 
            1992; 
            649 
            260-272 
            
            Reference Ris Wihthout Link
- 38 
            Shellock F G, Schaefer D J, Kanal E. 
            Physiologic responses to an MR imaging procedure performed at a specific absorption
            rate of 6.0 W/kg. 
            Radiology. 
            1994; 
            192 
            865-868 
            
            Reference Ris Wihthout Link
- 39 
            Rezai A R, Finelli D, Nuenhuis J A. et al .
            Neurostimulation systems for deep brain stimulation: in vitro evaluation of magnetic
            resonance imaging-related heating at 1.5 Tesla. 
            J Magn Reson Imaging. 
            2002; 
            15 
            241-250 
            
            Reference Ris Wihthout Link
- 40 
            Bhavaraju N C, Negaraddi V, Chetlapalli S R. et al .
            Electrical and thermal behaviour of non-ferrous noble metal electrodes exposed to
            MRI fields. 
            Magn Reson Imaging. 
            2001; 
            20 
            351-357 
            
            Reference Ris Wihthout Link
- 41 
            Georgi J C, Stippich C, Tronnier V M. et al .
            Active deep brain stimulation during MRI: a feasibility study. 
            Magn Reson Med. 
            2004; 
            51 
            380-388 
            
            Reference Ris Wihthout Link
- 42 
            Shellock F G, Begnaud J, Inman D M. 
            VNS Therapy System: in vitro evaluation of MRI-related heating and function at 1.5-
            and 3.0-Tesla. 
            Neuromodulation. 
            2006; 
            9 
            204-213 
            
            Reference Ris Wihthout Link
- 43 American Society for Testing and Materials (ASTM) International: F 2052 .Standard test method for measurement of magnetically induced displacement force on
            passive implants in the magnetic resonance environment. In: Annual Book of ASTM Standards:
            Medical Devices and Services. Vol. 13.01. West Conshohocken, Pa; American Society for Testing and Materials 2001 
            Reference Ris Wihthout Link
- 44 
            Sommer T, Maintz D, Schmiedel A. et al .
            Hochfeld-Magnetresonanztomographie: Magnetische Anziehungs- und Rotationskräfte auf
            metallische Implantate bei 3,0T. 
            Röntgenstr Fortschr. 
            2004; 
            176 
            731-738 
            
            Reference Ris Wihthout Link
- 45 
            Anderson R C, Walker M L, Viner J M. 
            Adjustment and malfunction of programmable valve after exposure to toy magnets. 
            J Neurosurg. 
            2004; 
            101 
            222-225 
            
            Reference Ris Wihthout Link
- 46 
            Miwa K, Kondo H, Sakai N. 
            Pressure changes observed in Codman-Medos programmable valves following magnetic exposure
            and filliping. 
            Childs Nerv Syst. 
            2001; 
            17 
            150-153 
            
            Reference Ris Wihthout Link
- 47 
            Mauge C, Lilienfeld S. 
            Magnetic resonance imaging and cerebrospinal fluid valves. 
            N Engl J Med. 
            2006; 
            354 
            531-532, author reply 531 – 532 
            
            Reference Ris Wihthout Link
- 48 
            Lindner D, Preul C, Trantakis C. 
            Effect of 3T MRI on the function of shunt valves-Evaluation of Paedi GAV, Dual Switch
            and proGAV. 
            Eur J Radiol. 
            2005; 
            56 
            56-59 
            
            Reference Ris Wihthout Link
- 49 
            Mauer U M, Schuler J, Kunz U. 
            The hakim programmable valve: reasons for reprogramming failures. 
            J Neurosurg. 
            2007; 
            107 
            788-791 
            
            Reference Ris Wihthout Link
- 50 
            Kurosaki K, Hamada H, Hayashi N. et al .
            A rare case of shunt malfunction attributable to blockage of a Codman-Hakim programmable
            shunt valve. 
            Childs Nerv Syst. 
            2002; 
            18 
            183-185 
            
            Reference Ris Wihthout Link
- 51 
            Inoue T, Kuzu Y, Ogasawara K. et al .
            Effect of 3-tesla magnetic resonance imaging on various programmable shunt valves. 
            J Neurosurg. 
            2005; 
            103 
            163-165 
            
            Reference Ris Wihthout Link
- 52 
            Aschoff A, Kremer P, Benesch C. 
            Overdrainage and shunt technology. A critical comparison of programmable, hydrostatic
            and variable-resistance valves and flow-reducing devices. 
            Childs Nerv Syst. 
            1995; 
            11 
            193-202 
            
            Reference Ris Wihthout Link
- 53 
            Ludemann W, Rosahl S K, Kaminsky J. et al .
            Reliability of a new adjustable shunt device without the need for readjustment following
            3-Tesla MRI. 
            Childs Nerv Syst. 
            2005; 
            21 
            227-229 
            
            Reference Ris Wihthout Link
Dr. Michael Akbar
         Stiftung Orthopädische Universitätsklinik Heidelberg
         
         Schlierbacher Landstraße 200a
         
         69118 Heidelberg
         
         Germany
         
         Phone:  ++  49/16 22/99 94 08
         
         Fax:  ++  49/62 21/96 73 07
         
         Email: michael.akbar@med.uni-heidelberg.de
         
         
 
     
      
    