Zusammenfassung
Neuropilin-1 (Nrp1) wurde erst vor Kurzem als weiterer Rezeptor für den endothelialen
Wachstumsfaktor VEGF beschrieben. Daher wird Nrp1 auch eine Rolle in der Tumorangiogenese
und Progression zugeschrieben, was die nachgewiesene Expression von Nrp1 auf Endothel-
und Tumorzellen bestätigt. Hier wurde daher die potenzielle Rolle eines Nrp1-knock-down
durch siRNA auf Hepatom- und Endothelzell-Funktionen in vitro und das Tumorwachstum
in vivo untersucht. Der Einfluss von siRNA-Nrp1 auf die Expression angiogener Faktoren
sowie auf die intrazelluläre Signaltransduktion in Endothel-(SVEC4 – 10) und Hepatom
(Hepa129)-Zellen wurde mittels semiquantitativer Real-Time-PCR und Western-Blot untersucht.
Funktionelle Effekte auf Endothelzellen wurden im Matrigel-Assay in vitro und in vivo
analysiert. Diese Ergebnisse wurden daraufhin in vivo in ein subkutanes Hepatom-Modell
transferiert und mittels Immunhistochemie (Proliferation, Apoptose und Blutgefäßdichte)
nachgewiesen. Die Transfektion von SVEC4 – 10 und Hepa129 mit siRNA-Nrp1 führte zu
einer starken Herabregulation von Nrp1 auf RNA- und Protein-Ebene, wobei sich kein
Einfluss auf die intrazelluläre Signaltransduktion zeigte. Trotzdem wurde die Bildung
endothelialer Strukturen in Matrigel durch siRNA-Nrp1 in vitro um 59 % und in vivo
um 94 % im Vergleich zur Kontroll-siRNA gehemmt. Dies korrelierte mit einer verringerten
Expression des Zelladhäsionsmoleküls VCAM. Andererseits konnten subkutanes Tumorwachstum
und Tumorzellproliferation durch siRNA-Nrp1 nicht gebremst werden, obwohl auch die
Blutgefäßdichte deutlich reduziert war. Damit führte die Herabregulation von Nrp1
mittels siRNA zu deutlichen antiangiogenen Effekten, ohne Tumorwachstum und -proliferation
zu beeinflussen.
Abstract
Neuropilin-1 (Nrp1) was recently described as a novel receptor for the pro-angiogenic
molecule vascular endothelial growth factor (VEGF), indicating a role in tumor angiogenesis
and tumor progression. Recent data confirm this assumption by demonstrating that some
tumor and endothelial cells express Nrp1. Therefore, we wanted to investigate the
potential role of Nrp1-knockdown on hepatoma and endothelial cell function in vitro
and tumor growth in vivo. Nrp1 knockdown in SVEC4 – 10 and Hepa129 cells and its influence
on signal transduction (MAPK pP38, pAKT, pERK1 / 2) was analyzed by Western blot.
Effects on endothelial tube formation were assayed in an in vitro and in vivo matrigel
assay. In vivo, effects of siRNA-Nrp1 were analyzed in a subcutaneous hepatoma model.
To verify effects on endothelial and tumor cells in vivo, immunohistochemistry for
proliferation, apoptosis and endothelial vessels was performed. LightCycler and Western
blot analysis showed efficient inhibition of gene expression in SVEC4 – 10 and Hepa129
cells following siRNA-Nrp1 transfection. Signal transduction pathways were not influenced
after siRNA-Nrp1 treatment compared to the controls. Endothelial tube formation was
reduced by 59 % and 94 % in vitro and in vivo compared to controls, corresponding
to reduced VCAM expression. Subcutaneous tumor growth was not influenced after siRNA
treatment. Intratumoral proliferation was not altered after treatment with siRNA-Nrp1,
whereas microvessel density and apoptosis were reduced after treatment with siRNA-Nrp1
compared to siRNA-Ctrl. In conclusion, inhibition of Nrp1 expression led to strong
anti-endothelial effects, whereas tumor cells and tumor growth were not affected.
Schlüsselwörter
hepatozelluläres Karzinom - RNA-Interferenz - Neuropilin-1 - VEGF Signalling - antiangiogene
Effekte
Key words
hepatocellular carcinoma - RNA interference - neuropilin-1 - VEGF signaling - anti-endothelial
effects
References
1
Soker S, Takashima S, Miao H Q. et al .
Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor
for vascular endothelial growth factor.
Cell.
1998;
92
735-745
2
Guttmann-Raviv N, Kessler O, Shraga-Heled N. et al .
The neuropilins and their role in tumorigenesis and tumor progression.
Cancer Lett.
2006;
231
1-11
3
Robinson C J, Stringer S E.
The splice variants of vascular endothelial growth factor (VEGF) and their receptors.
J Cell Sci.
2001;
114 (Pt 5)
853-865
4
Soker S.
Neuropilin in the midst of cell migration and retraction.
Int J Biochem Cell Biol.
2001;
33
433-437
5
Pan Q, Chanthery Y, Liang W C. et al .
Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor
growth.
Cancer Cell.
2007;
11
53-67
6
Miao H Q, Lee P, Lin H. et al .
Neuropilin-1 expression by tumor cells promotes tumor angiogenesis and progression.
Faseb J.
2000;
14
2532-2539
7
Quante M, Raskopf E, Stahl S. et al .
No functional and transductional significance of specific neuropilin 1 siRNA inhibition
in colon carcinoma cell lines lacking VEGF receptor 2.
Oncol Rep.
2009;
21
1161-1168
8
Llovet J M, Bruix J.
Novel advancements in the management of hepatocellular carcinoma in 2008.
J Hepatol.
2008;
48 (Suppl 1)
S20-S37
9
Llovet J M, Bruix J.
Molecular targeted therapies in hepatocellular carcinoma.
Hepatology.
2008;
48
1312-1327
10
Raskopf E, Vogt A, Sauerbruch T. et al .
siRNA targeting VEGF inhibits hepatocellular carcinoma growth and tumor angiogenesis
in vivo.
J Hepatol.
2008;
49
977-984
11
Kornek M, Lukacs-Kornek V, Limmer A. et al .
DOTAP formulated (immune-stimulatory) VEGF-A siRNA increased antitumoral efficacy
in orthotopic HCC in murine liver fibrosis.
Mol Med.
2008;
14 (7–8)
365-373
12
Mosmann T.
Rapid colorimetric assay for cellular growth and survival: application to proliferation
and cytotoxicity assays.
J Immunol Methods.
1983;
65
55-63
13
Pan Q, Chathery Y, Wu Y. et al .
Neuropilin-1 binds to VEGF121 and regulates endothelial cell migration and sprouting.
J Biol Chem.
2007;
282
24 049-24 056
14
Schmitz V, Raskopf E, Gonzalez-Carmona M A. et al .
Plasminogen fragment K 1 – 5 improves survival in a murine hepatocellular carcinoma
model.
Gut.
2007;
56
271-278
15
Zachary I.
VEGF signalling: integration and multi-tasking in endothelial cell biology.
Biochem Soc Trans.
2003;
31 (Pt 6)
1171-1177
16
Rajan S, Ye J, Bai S. et al .
NF-kappaB, but not p38 MAP kinase, is required for TNF-alpha-induced expression of
cell adhesion molecules in endothelial cells.
J Cell Biochem.
2008;
105
477-486
17
Robbins M, Judge A, Ambegia E. et al .
Misinterpreting the therapeutic effects of siRNA caused by immune stimulation.
Hum Gene Ther.
2008;
19 (10)
991-999
Dr. Esther Raskopf
Department of Inner Medicine I, University of Bonn, Medical School
Sigmund-Freud-Straße 25
53127 Bonn
Germany
Phone: ++ 49/2 28/28 71 64 69
Fax: ++ 49/2 28/28 71 14 83
Email: esther.raskopf@ukb.uni-bonn.de