Z Gastroenterol 2010; 48(1): 38-45
DOI: 10.1055/s-0028-1109933
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Pathogenese der Leberfibrose: Regulation von hepatischen Sternzellen durch Chemokine

Pathogenesis of Liver Fibrosis: Modulation of Stellate Cells by ChemokinesH. E. Wasmuth1 , R. Weiskirchen2
  • 1Medizinische Klinik III, Universitätsklinikum Aachen, RWTH Aachen
  • 2Institut für Klinische Chemie und Pathobiochemie, Universitätsklinikum Aachen, RWTH Aachen
Further Information

Publication History

Manuskript eingetroffen: 8.9.2009

Manuskript akzeptiert: 15.11.2009

Publication Date:
13 January 2010 (online)

Zusammenfassung

Die Leberfibrose ist die gemeinsame Endstrecke chronischer Lebererkrankungen und für einen großen Teil der Mortalität und Morbidität der Erkrankungen verantwortlich. In den letzten Jahren zeigte sich, dass Chemokine und ihre Rezeptoren eine Rolle in der Entwicklung einer Leberfibrose spielen. Hierbei handelt es sich um eine Familie chemotaktischer und immunmodulierender Moleküle, die über G-Protein gekoppelte Rezeptoren auf Zielzellen wirken. Neben der klassischen Funktion einer Immunzellrekrutierung in die Leber konnten auch direkte Effekte der Chemokine auf hepatische Sternzellen nachgewiesen werden. Bisher sind 9 der 19 bekannten Chemokinrezeptoren auf hepatischen Sternzellen charakterisiert worden. Ihre Stimulation mit spezifischen Liganden führt zumeist zu einer Migration und Proliferation dieser Zellen, was überwiegend für profibrotische Effekte von Chemokinen spricht. Bisher wurden nur für den Chemokinrezeptor CXCR3 auch antifibrotische Eigenschaften auf hepatischen Sternzellen beschrieben. Hepatische Sternzellen sind jedoch nicht nur das Ziel von Chemokinen, sondern sie sind auch zur Sekretion diverser Chemokine in der Lage. Hierdurch wird u. a. die Interaktion der Zellen mit infiltrierenden Immunzellen in der Leber vermittelt. Die weitere Aufklärung dieser Interaktionen kann auf lange Sicht neue Interventionsmöglichkeiten zur Therapie fibrosierender Lebererkrankungen eröffnen. Hierzu scheinen Chemokine besonders geeignet, da bereits erste orale Chemokinrezeptorantagonisten zugelassen wurden.

Abstract

Liver fibrosis is the common sequel of chronic liver diseases and is associated with high morbidity and mortality in affected patients. In recent years, the contribution of chemokines and their receptors to liver fibrosis has been delineated. Chemokines are a family of chemotactic and immunomodulatory molecules that act through different G-protein coupled receptors on target cells. Apart from their classical function of regulating immune cell recruitment during chronic liver injury, chemokines can directly affect the function of hepatic stellate cells within the liver. Up to now, nine of the 19 known chemokine receptors have been characterised on stellate cells. Stimulation of most of these receptors with specific ligands leads to increased migration and proliferation of stellate cells, suggesting predominantly profibrotic effects of chemokines. The only chemokine receptor with potential antifibrotic effects identified so far is CXCR3. Notably, hepatic stellate cells are not only a target but also a source of chemokines which contributes to the direct interaction between stellate cells and other cells during fibrogenesis. The further characterisation of this interaction will yield new therapeutic options for the treatment of chronic liver diseases. In this respect chemokines are a valuable target as oral chemokine receptor antagonists have already been licensed for human use.

Literatur

  • 1 Luster A D. Chemokines – chemotactic cytokines that mediate inflammation.  N Engl J Med. 1998;  338 436-445
  • 2 Rot A, Andrian U H. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells.  Annu Rev Immunol. 2004;  22 891-928
  • 3 Charo I F, Ransohoff R M. The many roles of chemokines and chemokine receptors in inflammation.  N Engl J Med. 2006;  354 610-621
  • 4 Mantovani von A, Bonecchi R, Locati M. Tuning inflammation and immunity by chemokine sequestration: decoys and more.  Nat Rev Immunol. 2006;  6 907-918
  • 5 Berres M L, Trautwein C, Zaldivar M M. et al . The chemokine scavenging receptor D 6 limits acute toxic liver injury in vivo.  Biol Chem. 2009;  390 1039-1045
  • 6 Mantovani A, Locati M, Vecchi A. et al . Decoy receptors: a strategy to regulate inflammatory cytokines and chemokines.  Trends Immunol. 2001;  22 328-336
  • 7 Bonecchi R, Galliera E, Borroni E M. et al . Chemokines and chemokine receptors: an overview.  Front Biosci. 2009;  14 540-551
  • 8 Sayana S, Khanlou H. Maraviroc: a new CCR5 antagonist.  Expert Rev Anti Infect Ther. 2009;  7 9-19
  • 9 Kuboki S, Shin T, Huber N. et al . Hepatocyte signaling through CXC chemokine receptor-2 is detrimental to liver recovery after ischemia/reperfusion in mice.  Hepatology. 2008;  48 1213-1223
  • 10 Krohn N, Kapoor S, Enami Y. et al . Hepatocyte transplantation-induced liver inflammation is driven by cytokines-chemokines associated with neutrophils and Kupffer cells.  Gastroenterology. 2009;  136 1806-1817
  • 11 Barbi J, Oghumu S, Rosas L E. et al . Lack of CXCR3 delays the development of hepatic inflammation but does not impair resistance to Leishmania donovani.  J Infect Dis. 2007;  195 1713-1717
  • 12 Bataller R, North K E, Brenner D A. Genetic polymorphisms and the progression of liver fibrosis: a critical appraisal.  Hepatology. 2003;  37 493-503
  • 13 Gressner A M, Weiskirchen R. Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets.  J Cell Mol Med. 2006;  10 76-99
  • 14 Wasmuth H E, Tag C G, Van de Leur E. et al . The Marburg I variant (G534E) of the factor VII-activating protease determines liver fibrosis in hepatitis C infection by reduced proteolysis of platelet-derived growth factor BB.  Hepatology. 2009;  49 775-780
  • 15 Seki E, De Minicis S, Gwak G Y. et al . CCR1 and CCR5 promote hepatic fibrosis in mice.  J Clin Invest. 2009;  119 1858-1870
  • 16 Ajuebor M N, Wondimu Z, Hogaboam C M. et al . CCR5 deficiency drives enhanced natural killer cell trafficking to and activation within the liver in murine T cell-mediated hepatitis.  Am J Pathol. 2007;  170 1975-1988
  • 17 Marra F, Grandaliano G, Valente A J. et al . Thrombin stimulates proliferation of liver fat-storing cells and expression of monocyte chemotactic protein-1: potential role in liver injury.  Hepatology. 1995;  22 780-787
  • 18 Marra F, DeFranco R, Grappone C. et al . Increased expression of monocyte chemotactic protein-1 during active hepatic fibrogenesis: correlation with monocyte infiltration.  Am J Pathol. 1998;  152 423-430
  • 19 Ramm G A, Shepherd R W, Hoskins A C. et al . Fibrogenesis in pediatric cholestatic liver disease: role of taurocholate and hepatocyte-derived monocyte chemotaxis protein-1 in hepatic stellate cell recruitment.  Hepatology. 2009;  49 533-544
  • 20 Seki E, De Minicis S, Osterreicher C H. et al . TLR4 enhances TGF-beta signaling and hepatic fibrosis.  Nat Med. 2007;  13 1324-1332
  • 21 Kruglov E A, Nathanson R A, Nguyen T. et al . Secretion of MCP-1 /CCL2 by bile duct epithelia induces myofibroblastic transdifferentiation of portal fibroblasts.  Am J Physiol Gastrointest Liver Physiol. 2006;  290 G765-G771
  • 22 Marra F, Valente A J, Pinzani M. et al . Cultured human liver fat-storing cells produce monocyte chemotactic protein-1. Regulation by proinflammatory cytokines.  J Clin Invest. 1993;  92 1674-1680
  • 23 Marra F, Romanelli R G, Giannini C. et al . Monocyte chemotactic protein-1 as a chemoattractant for human hepatic stellate cells.  Hepatology. 1999;  29 140-148
  • 24 Seki E, Minicis de S, Inokuchi S. et al . CCR2 promotes hepatic fibrosis in mice.  Hepatology. 2009;  50 185-197
  • 25 Cassiman D, Libbrecht L, Desmet V. et al . Hepatic stellate cell/myofibroblast subpopulations in fibrotic human and rat livers.  J Hepatol. 2002;  36 200-209
  • 26 Karlmark K R, Weiskirchen R, Zimmermann H W. et al . Hepatic recruitment of the inflammatory Gr1 + monocyte subset upon liver injury promotes hepatic fibrosis.  Hepatology. 2009;  50 261-274
  • 27 Karlmark K R, Wasmuth H E, Trautwein C. et al . Chemokine-directed immune cell infiltration in acute and chronic liver disease.  Expert Rev Gastroenterol Hepatol. 2008;  2 233-242
  • 28 Horuk R. Chemokine receptors and HIV-1: the fusion of two major research fields.  Immunol Today. 1999;  20 89-94
  • 29 Samson M, Libert F, Doranz B J. et al . Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene.  Nature. 1996;  382 722-725
  • 30 Goulding C, McManus R, Murphy A. et al . The CCR5-delta32 mutation: impact on disease outcome in individuals with hepatitis C infection from a single source.  Gut. 2005;  54 1157-1161
  • 31 Wasmuth H E, Werth A, Mueller T. et al . CC chemokine receptor 5 delta32 polymorphism in two independent cohorts of hepatitis C virus infected patients without hemophilia.  J Mol Med. 2004;  82 64-69
  • 32 Hellier S, Frodsham A J, Hennig B J. et al . Association of genetic variants of the chemokine receptor CCR5 and its ligands, RANTES and MCP-2, with outcome of HCV infection.  Hepatology. 2003;  38 1468-1476
  • 33 Woitas R P, Ahlenstiel G, Iwan A. et al . Frequency of the HIV-protective CC chemokine receptor 5-Delta32 /Delta32 genotype is increased in hepatitis C.  Gastroenterology. 2002;  122 1721-1728
  • 34 Promrat K, McDermott D H, Gonzalez C M. et al . Associations of chemokine system polymorphisms with clinical outcomes and treatment responses of chronic hepatitis C.  Gastroenterology. 2003;  124 352-360
  • 35 Wasmuth H E, Werth A, Mueller T. et al . Haplotype-tagging RANTES gene variants influence response to antiviral therapy in chronic hepatitis C.  Hepatology. 2004;  40 327-334
  • 36 Schwabe R F, Bataller R, Brenner D A. Human hepatic stellate cells express CCR5 and RANTES to induce proliferation and migration.  Am J Physiol Gastrointest Liver Physiol. 2003;  285 G949-G958
  • 37 Holt A P, Haughton E L, Lalor P F. et al . Liver myofibroblasts regulate infiltration and positioning of lymphocytes in human liver.  Gastroenterology. 2009;  136 705-714
  • 38 Holt A P, Salmon M, Buckley C D. et al . Immune interactions in hepatic fibrosis.  Clin Liver Dis. 2008;  12 861-882, x
  • 39 Bonacchi A, Petrai I, Defranco R M. et al . The chemokine CCL21 modulates lymphocyte recruitment and fibrosis in chronic hepatitis C.  Gastroenterology. 2003;  125 1060-1076
  • 40 Muller G, Hopken U E, Lipp M. The impact of CCR7 and CXCR5 on lymphoid organ development and systemic immunity.  Immunol Rev. 2003;  195 117-135
  • 41 Winau F, Hegasy G, Weiskirchen R. et al . Ito cells are liver-resident antigen-presenting cells for activating T cell responses.  Immunity. 2007;  26 117-129
  • 42 Bernhagen J, Krohn R, Lue H. et al . MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment.  Nat Med. 2007;  13 587-596
  • 43 Ryseck R P, MacDonald-Bravo H, Mattei M G. et al . Cloning and sequence of a secretory protein induced by growth factors in mouse fibroblasts.  Exp Cell Res. 1989;  180 266-275
  • 44 Stefanovic L, Brenner D A, Stefanovic B. Direct hepatotoxic effect of KC chemokine in the liver without infiltration of neutrophils.  Exp Biol Med. 2005;  230 573-586
  • 45 Lasagni L, Francalanci M, Annunziato F. et al . An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4.  J Exp Med. 2003;  197 1537-1549
  • 46 Bonecchi R, Bianchi G, Bordignon P P. et al . Differential expression of chemokine receptors and chemotactic responsiveness of type 1T helper cells (Th1 s) and Th2 s.  J Exp Med. 1998;  187 129-134
  • 47 Xu L, Hui A Y, Albanis E. et al . Human hepatic stellate cell lines, LX-1 and LX-2: new tools for analysis of hepatic fibrosis.  Gut. 2005;  54 142-151
  • 48 Bonacchi A, Romagnani P, Romanelli R G. et al . Signal transduction by the chemokine receptor CXCR3: activation of Ras/ERK, Src, and phosphatidylinositol 3-kinase/Akt controls cell migration and proliferation in human vascular pericytes.  J Biol Chem. 2001;  276 9945-9954
  • 49 Wasmuth H E, Lammert F, Zaldivar M M. et al . Antifibrotic effects of CXCL9 and its receptor CXCR3 in livers of mice and humans.  Gastroenterology. 2009;  137 309-319, 319 e301 – 303
  • 50 Wynn T A. Fibrotic disease and the T(H)1 /T(H)2 paradigm.  Nat Rev Immunol. 2004;  4 583-594
  • 51 Schrage A, Wechsung K, Neumann K. et al . Enhanced T cell transmigration across the murine liver sinusoidal endothelium is mediated by transcytosis and surface presentation of chemokines.  Hepatology. 2008;  48 1262-1272
  • 52 Curbishley S M, Eksteen B, Gladue R P. et al . CXCR 3 activation promotes lymphocyte transendothelial migration across human hepatic endothelium under fluid flow.  Am J Pathol. 2005;  167 887-899
  • 53 Colvin R A, Campanella G S, Sun J. et al . Intracellular domains of CXCR3 that mediate CXCL9, CXCL10, and CXCL11 function.  J Biol Chem. 2004;  279 30 219-30 227
  • 54 Hundelshausen von P, Koenen R R, Sack M. et al . Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium.  Blood. 2005;  105 924-930
  • 55 Koenen R R, Hundelshausen von P, Nesmelova I V. et al . Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice.  Nat Med. 2009;  15 97-103
  • 56 Hong F, Tuyama A, Lee T F. et al . Hepatic stellate cells express functional CXCR4: role in stromal cell-derived factor-1alpha-mediated stellate cell activation.  Hepatology. 2009;  49 2055-2067
  • 57 Wald O, Pappo O, Safadi R. et al . Involvement of the CXCL12 /CXCR4 pathway in the advanced liver disease that is associated with hepatitis C virus or hepatitis B virus.  Eur J Immunol. 2004;  34 1164-1174
  • 58 Wang J, Shiozawa Y, Wang Y. et al . The role of CXCR7 /RDC1 as a chemokine receptor for CXCL12 /SDF-1 in prostate cancer.  J Biol Chem. 2008;  283 4283-4294
  • 59 Sierro F, Biben C, Martinez-Munoz L. et al . Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12 /SDF-1 receptor, CXCR7.  Proc Natl Acad Sci U S A. 2007;  104 14 759-14 764
  • 60 Graham G J. D6 and the atypical chemokine receptor family: novel regulators of immune and inflammatory processes.  Eur J Immunol. 2009;  39 342-351
  • 61 Fraticelli P, Sironi M, Bianchi G. et al . Fractalkine (CX3CL1) as an amplification circuit of polarized Th1 responses.  J Clin Invest. 2001;  107 1173-1181
  • 62 Efsen E, Grappone C, DeFranco R M. et al . Up-regulated expression of fractalkine and its receptor CX 3CR1 during liver injury in humans.  J Hepatol. 2002;  37 39-47
  • 63 Isse K, Harada K, Zen Y. et al . Fractalkine and CX 3CR1 are involved in the recruitment of intraepithelial lymphocytes of intrahepatic bile ducts.  Hepatology. 2005;  41 506-516
  • 64 Wasmuth H E, Zaldivar M M, Berres M L. et al . The fractalkine receptor CX 3CR1 is involved in liver fibrosis due to chronic hepatitis C infection.  J Hepatol. 2008;  48 208-215
  • 65 McDermott D H, Fong A M, Yang Q. et al . Chemokine receptor mutant CX 3CR1-M280 has impaired adhesive function and correlates with protection from cardiovascular disease in humans.  J Clin Invest. 2003;  111 1241-1250
  • 66 Landsman L, Bar-On L, Zernecke A. et al . CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival.  Blood. 2009;  113 963-972
  • 67 Bourd-Boittin K, Basset L, Bonnier D. et al . Cx3 cl1 /Fractalkine Shedding by Human Hepatic Stellate Cells: Contribution to Chronic Inflammation in the Liver.  J Cell Mol Med. 2009;  13 1526-1535
  • 68 Pease J E, Horuk R. Chemokine receptor antagonists: Part 1.  Expert Opin Ther Pat. 2009;  19 39-58
  • 69 Pease J E, Horuk R. Chemokine receptor antagonists: Part 2.  Expert Opin Ther Pat. 2009;  19 199-221

Prof. Dr. Hermann E. Wasmuth

Medizinische Klinik III, Universitätsklinikum Aachen, RWTH Aachen

Pauwelsstraße 30

52057 Aachen

Phone: ++ 49/2 41/8 08 08 61

Fax: ++ 49/2 41/8 08 24 55

Email: hwasmuth@ukaachen.de