Subscribe to RSS
DOI: 10.1055/s-0028-1119565
© Georg Thieme Verlag KG Stuttgart · New York
Aktuelle Anforderungen an polymere Biomaterialien in der Hals-Nasen-Ohrenheilkunde
Current Requirements for Polymeric Biomaterials in Ear, Nose and Throat MedicinePublication History
Publication Date:
07 April 2009 (online)
Zusammenfassung
Die Hals-Nasen-Ohrenheilkunde wurde in den vergangenen Jahren durch zahlreiche Neuentwicklungen auf dem Gebiet der Implantate geprägt, die zum einen auf innovativen Biomaterialien und zum anderen auf neuen Implantattechnologien basieren. Dabei müssen die verwendeten Biomaterialien, weil sie in lebende Systeme integriert werden, neben den technischen Anforderungen auch den biologischen Wechselwirkungsmechanismen Rechnung tragen. Im Hinblick auf ihre Eignung sind somit sowohl die technische Funktionsfähigkeit durch auf das jeweilige Implantat abgestimmte mechanische Eigenschaften, die ausreichende Stabilität gegenüber physiologischen Medien als auch eine hohe Biokompatibilität zu fordern. Das Ziel des Einsatzes von Biomaterialien für Implantate besteht dabei darin, die Biofunktionalität über möglichst lange Zeiträume zu erhalten. Diese allgemeinen Anforderungen an Biomaterialien haben selbstverständlich auch für die Hals-Nasen-Ohrenheilkunde ihre Gültigkeit. Als Biomaterialien kommen Materialien aus verschiedenen Werkstoffklassen zum Einsatz. Zu den ältesten, als Biomaterial verwendeten Werkstoffen zählen Metalle. Außerdem fanden metallische Legierungen, Keramiken, Gläser oder Verbundwerkstoffe Berücksichtigung. Weitverbreitet sind darüber hinaus natürliche und synthetische Polymere, die im vorliegenden Beitrag schwerpunktmäßig hinsichtlich ihrer Eigenschaften und ihrer Verwendung als Materialien für Cochleaimplantate, Osteosynthese-Implantate, Stents und Trägerstrukturen für das Tissue Engineering vorgestellt werden. Bedingt durch ihren Einsatz als permanente bzw. temporäre Implantate wird dabei in biostabile bzw. biodegradierbare Polymere unterschieden. Die im vorliegenden Beitrag aufgezeigten allgemeinen und aktuellen Anforderungen an Biomaterialien und die dargestellten ausgewählten Biomaterialapplikationen in der Hals-Nasen-Ohrenheilkunde belegen die Schwerpunkte der aktuellen Biomaterialforschung in diesem Bereich und verdeutlichen zugleich den hohen Stellenwert der interdisziplinären Zusammenarbeit zwischen Naturwissenschaftlern, Ingenieuren und Medizinern.
Abstract
In recent years the ear, nose and throat medicine (ENT medicine) has been stimulated by numerous innovations in the field of implants which are based on new biomaterials and modern implant technologies. In this context, biomaterials integrated in living organisms have to allow for the technical requirements and the biological interactions between the implant and the tissue. With regard to their suitability, functional capability of the implant, which is complementary to the mechanical implant properties, sufficient stability against physiological media, as well as high biocompatibility are to be demanded. Another purpose of the use of biomaterials is the maintenance and the enhancement of biofunctionality over a long time period. These general requirements for biomaterials also have their validity in ENT medicine.
Different materials are applied as biomaterials. Metals belong to the oldest biomaterials. In addition, alloys, ceramics, inorganic glasses and composites were tested. Furthermore, natural and synthetic polymers, which are primarily presented in this article regarding their properties and their applications as materials for cochlear implants, osteosynthesis implants, stents and novel scaffolds for tissue engineering, are increasingly applied. According to their use in permanent and temporary implants, polymers are to be differentiated between biostable and biodegradable polymers.
The presented general and current requirements for biomaterials and biomaterial applications in ENT medicine demonstrate key aspects of the current biomaterial research in this field. They do as well document the high impact of the interdisciplinary collaboration of natural and medical scientists and engineers.
Schlüsselwörter
Biomaterialien - Polymere - Implantate - Hals-Nasen-Ohrenheilkunde
Key words
Biomaterials - polymers - implants - ear, nose and throat medicine
Literatur
- 1 Langer R. 1994 Whitaker Lecture: polymers for drug delivery and tissue engineering. Ann Biomed Eng. 1995; 23 (2) 101-111
- 2 Langer R. Drug delivery and targeting. Nature. 1998; 392 (6679 Suppl) 5-10
- 3 Langer R. Biomaterials in drug delivery and tissue engineering: one laboratory's experience. Acc Chem Res. 2000; 33 (2) 94-101
- 4 Oberhoff M, Kunert W, Herdeg C. et al . Inhibition of smooth muscle cell proliferation after local drug delivery of the antimitotic drug paclitaxel using a porous balloon catheter. Basic Res Cardiol. 2001; 96 (3) 275-282
- 5 Paulson D P, Abuzeid W, Jiang H. et al . A novel controlled local drug delivery system for inner ear disease. Laryngoscope. 2008; 118 (4) 706-711
- 6 Seabra A B, da Silva R, de Souza G F, de Oliveira M G. Antithrombogenic polynitrosated polyester/poly(methyl methacrylate) blend for the coating of blood-contacting surfaces. Artif Organs. 2008; 32 (4) 262-267
- 7 Qiu Y, Zhang N, An Y H, Wen X. Biomaterial strategies to reduce implant-associated infections. Int J Artif Organs. 2007; 30 (9) 828-841
- 8 Simmons C A, Alsberg E, Hsiong S, Kim W J, Mooney D J. Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone. 2004; 35 (2) 562-569
- 9 Liu Y, Li J P, Hunziker E B, de Groot K. Incorporation of growth factors into medical devices via biomimetic coatings. Philos Transact A Math Phys Eng Sci. 2006; 364 (1838) 233-248
- 10 Ratner B D. Biomaterials Science. An Introduction to Materials in Medicine. 2 ed. Amsterdam; Academic Press 2004
- 11 Lendlein A. Polymere als Implantatwerkstoffe. Chemie in unserer Zeit. 1999; 33 (5) 279-295
- 12 Mathur A B, Collier T O, Kao W J. In vivo biocompatibility and biostability of modified polyurethanes. J Biomed Mater Res. 1997; 36 (2) 246-257
- 13 Heumann S, Eberl A, Pobeheim H. et al . New model substrates for enzymes hydrolysing polyethyleneterephthalate and polyamide fibres. J Biochem Biophys Methods. 2006; 69 (1 – 2) 89-99
- 14 King R N, Lyman D J. Polymers in contact with the body. Environ Health Perspect. 1975; 11 71-74
- 15 Yasin M, Tighe B J. Strategies for the design of biodegradable polymer systems: Manipulation of polyhydroxybutyrate-based materials. Plastics, rubber and composites processing and applications. Plast Rubber Composites Process Appl. 1993; 19 15-27
- 16 Malm T, Bowald S, Bylock A, Saldeen T, Busch C. Regeneration of pericardial tissue on absorbable polymer patches implanted into the pericardial sac. An immunohistochemical, ultrastructural and biochemical study in the sheep. Scand J Thorac Cardiovasc Surg. 1992; 26 (1) 15-21
- 17 Malm T, Bowald S, Bylock A, Busch C. Prevention of postoperative pericardial adhesions by closure of the pericardium with absorbable polymer patches. An experimental study. J Thorac Cardiovasc Surg. 1992; 104 (3) 600-607
- 18 Malm T, Bowald S, Karacagil S, Bylock A, Busch C. A new biodegradable patch for closure of atrial septal defect. An experimental study. Scand J Thorac Cardiovasc Surg. 1992; 26 (1) 9-14
- 19 Heimerl A, Pietsch H, Rademacher K H. et al .Chirurgische Implantate. 1989 EP 000000336148 A2:
- 20 Hazari A, Johansson-Ruden G, Junemo-Bostrom K. et al . A new resorbable wrap-around implant as an alternative nerve repair technique. J Hand Surg [Br]. 1999; 24 (3) 291-295
- 21 Fambri L, Bianchetti M, Migliaresi C. et al .Preparation and characterization of piezoelectric poly-L-lactide films for electrostimulated tissue regeneration. Proceedings of the 15th European Conference on Biomaterials, Bordeaux, Frankreich,. 1999
- 22 Holmes P A. Applications of PHB – a microbially produced biodegradable thermoplastic. Phys Technol. 1985; 16 32-36
- 23 Tsuji T, Tamai H, Igaki K. et al . Biodegradable Polymeric Stents. Curr Interv Cardiol Rep. 2001; 3 (1) 10-17
- 24 Tanguay J F, Zidar J P, Phillips H R, Stack R S. Current status of biodegradable stents. Cardiol Clin. 1994; 12 (4) 699-713
-
25 Zidar J P, Lincoff A M, Stack R S. Biodegradable stents. Topol EJ (ed)
Textbook of interventional cardiology. Philadelphia; 1994: 787-802 - 26 Van der Giessen W J, Lincoff A M, Schwartz R S. et al . Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation. 1996; 94 (7) 1690-1697
- 27 Unverdorben M, Spielberger A, Schywalsky M. et al . A polyhydroxybutyrate biodegradable stent: preliminary experience in the rabbit. Cardiovasc Intervent Radiol. 2002; 25 (2) 127-132
- 28 Labinaz M, Zidar J P, Stack R S, Phillips H R. Biodegradable stents: the future of interventional cardiology?. J Interv Cardiol. 1995; 8 (4) 395-405
- 29 Sodian R, Hoerstrup S P, Sperling J S. et al . Evaluation of biodegradable, three-dimensional matrices for tissue engineering of heart valves. ASAIO J. 2000; 46 (1) 107-110
- 30 Grabow N, Schmohl K, Khosravi A. et al . Mechanical and structural properties of a novel hybrid heart valve scaffold for tissue engineering. Artif Organs. 2004; 28 (11) 971-979
- 31 Yang C, Sodian R, Fu P. et al . In vitro fabrication of a tissue engineered human cardiovascular patch for future use in cardiovascular surgery. Ann Thorac Surg. 2006; 81 (1) 57-63
- 32 Williams S F, Martin D P, Gerngross T, Horowitz D M. Polyhydroxyalkanoates for in vivo applications. 2004 US 020040053381 A1:
- 33 Williams S F, Martin D P, Skraly F. Medical devices and applications of polyhydroxyalkanoate polymers. 2000 CA 000002368470 A1:
- 34 Schmitz K P, Behrend D, Sternberg K. et al .Polymeric, Degradable Drug-Eluting Stents and Coatings. 2007 US 020070185561 A1:
- 35 Martin D P, Williams S F. Poly-4-hydroxybutyrate matrices for sustained drug delivery. 2005 US 020050025809 A1:
- 36 Lenarz T, Lesinski-Schiedat A, Weber B P. et al . The Nucleus Double Array Cochlear Implant: a new concept in obliterated cochlea. Laryngo-Rhino-Otologie. 1999; 78 (8) 421-428
- 37 Miller J M, Le Prell C G, Prieskorn D M, Wys N L, Altschuler R A. Delayed neurotrophin treatment following deafness rescues spiral ganglion cells from death and promotes regrowth of auditory nerve peripheral processes: effects of brain-derived neurotrophic factor and fibroblast growth factor. J Neurosci Res. 2007; 85 (9) 1959-1969
- 38 Maruyama J, Miller J M, Ulfendahl M. Glial cell line-derived neurotrophic factor and antioxidants preserve the electrical responsiveness of the spiral ganglion neurons after experimentally induced deafness. Neurobiol Dis. 2008; 29 (1) 14-21
- 39 Paasche G, Bockel F, Tasche C, Lesinski-Schiedat A, Lenarz T. Changes of postoperative impedances in cochlear implant patients: the short-term effects of modified electrode surfaces and intracochlear corticosteroids. Otol Neurotol. 2006; 27 (5) 639-647
- 40 Behrend D, Pau H W, Schmidt W, Sternberg K, Schmitz K P. Klinische und technische Anforderungen an die Cochlea-Elektrodenentwicklung. Biomaterialien. 2005; 6 (S1) 14-15
- 41 Sternberg K, Stöver T, Schmohl K, Lenarz T, Schmitz K P. Functionalization of cochlea-implant surfaces for focused local pharmacotherapy of the inner ear. Biomaterialien. 2005; 6 (S1) 50-51
- 42 Pau H W, Just T, Lehnhardt E, Hessel H, Behrend D. An „endosteal electrode” for cochlear implantation in cases with residual hearing? Feasibility study: preliminary temporal bone experiments. Otol Neurotol. 2005; 26 (3) 448-454
- 43 Pau H W, Just T, Dommerich S, Behrend D. Temporal bone investigations on landmarks for conventional or endosteal insertion of cochlear electrodes. Acta Otolaryngol. 2007; 127 (9) Sep 920-926
- 44 Pau H W, Just T, Dommerich S, Lehnhardt E, Behrend D. Endosteale Elektrode als neues Konzept eines Cochlea-Implants bei Restgehör. Biomaterialien. 2005; 6 (S1) 36-37
- 45 Bärmann M, Stasche N. Das Verhalten von Titan-Osteosynthesen im Mittelgesicht, 91. Jahrestagung der Vereinigung Südwestdeutscher Hals-Nasen-Ohrenärzte, 13ème Rencontre Régional d'ORL Saar-Lor-Lux, 28. – 29. 9. 2007, Kaiserslautern.
- 46 Acero J, Calderon J, Salmeron J I. et al . The behaviour of titanium as a biomaterial: microscopy study of plates and surrounding tissues in facial osteosynthesis. J Craniomacillofac Surg. 1999; 27 (2) 117-123
- 47 Lin K, Bartelett S, Yaremchuk M. An experimental study on the effect of rigid fixation on the developing craniofacial skeleton. Plast Reconstr Surg. 1991; 87 229-235
- 48 Rosenberg A, Grätz K, Sailer H. Should titanium miniplates be removed after bone healing is complete?. Int J Oral Maxillofac Surg. 1993; 22 185-188
- 49 Suuronen R. Biodegradable fracture-fixation devices in maxillofacial surgery. Int J Oral Maxillofac Surg. 1993; 22 50-57
- 50 Pistner H, Hoppert T, Gutwald R, Mühling J, Reuther J. Biodegradation von Polylactid-Osteosynthesematerialien im Langzeitversuch. Dtsch Z Mund Kiefer GesichtsChir. 1994; 18 50-53
- 51 Kulkarni R K, Pani K C, Neuman C, Leonard F. Polylactic acid for surgical implants. Arch Surg. 1966; 93 839-843
- 52 Kramp B, Bernd H E, Schumacher W A. et al . Polyhydroxybuttersäure (PHB)-Folien und -Platten zur Defektdeckung des knöchernen Schädels im Kaninchenmodell. Laryngo-Rhino-Otol. 2002; 81 351-356
- 53 Kunze C, Bernd H E, Androsch R. et al . In vitro and in vivo studies on blends of isotactic and atactic poly (3-hydroxybutyrate) for development of a dura substitute material. Biomaterials. 2006; 27 (2) 192-201
- 54 Bernd H E, Kunze C, Freier T. et al . Poly(3-hydroxybutyrate) (PHB) patches for covering anterior skull base defects – an animal study with minipigs. Acta Otolaryngol. 2008; 1-8
- 55 Knowles J C, Hastings G W. In vitro degradation of a PHB/PHV copolymer and a new technique for monitoring early surface changes. Biomaterials. 1991; 12 210-214
- 56 Knowles J C, Hastings G W. In vitro and in vivo investigation of a range of phosphate glass-reinforced polyhydroxybutyrate-based degradable composites. Journal of materials science, Materials in medicine. 1993; 4 102-106
- 57 Boeree N R, Dove J, Cooper J J, Knowles J, Hastings G W. Development of a degradable composite for orthopaedic use: mechanical evaluation of an hydroxyapatite-polyhydroxybutyrate composite material. Biomaterials. 1993; 14 793-796
- 58 Doyle C, Tanner E T, Bonfield W. In vitro and in vivo evaluation of polyhydroxybutyrate and of polyhydroxybutyrate reinforced with hydroxyapatite. Biomaterials. 1991; 12 841-847
- 59 Vainionpää S, Rokkanen P, Törmälä P. Surgical applications of biodegradable polymers in human tissues. Progress in polymer science. 1989; 14 679-716
- 60 Fukada E, Ando Y. Bending piezoelectricity in a microbially produced poly-β-hydroxybutyrate. Biorheology. 1988; 25 297-302
- 61 Knowles J C, Mahmud F A, Hastings G W. Piezoelectric characteristics of a polyhydroxybutyrate-based composite. Clinical materials. 1991; 8 155-158
- 62 Holmes P A. Applications of PHB – a microbially produced biodegradable thermoplastic. Physics in technology. 1985; 16 32-36
- 63 Sousa J E, Serruys P W, Costa M A. New Frontiers in Cardiology, Drug-Eluting Stents: Part I and II. (S. 2283 – 2289). Circulation. 2003; 107 2274-2279
- 64 Regar E, Sianos G, Serruys P W. Stent development and local drug delivery. Brit Med Bull. 2001; 59 227-248
- 65 Alexis F, Venkatraman S S, Rath S K, Boey F. In vitro study of release mechanisms of paclitaxel and rapamycin from drug-incorporated biodegradable stent matrices. J Control Release. 2004; 98 67-74
- 66 Sternberg K, Kramer S, Nischan C. et al . In vitro study of drug-eluting stent coatings based on poly(L-lactide) incorporating cyclosporine A – drug release, polymer degradation and mechanical integrity. J Mater Sci Mater Med. 2007; 18 (7) 1423-1432
- 67 Schmidt W, Sternberg K, Grabow N. et al . Mikrostents in der Hals-Nasen-Ohrenheilkunde. Biomaterialien. 2005; 6 (S1) 42-43
- 68 Geißler M, Pau H W, Kramp B. Der Stent im Konzept der modernen Stirnhöhlenchirurgie – Analyse und Ausblick, 79. Jahresversammlung der Deutschen Gesellschaft für Hals-Nasen-Ohren-Heilkunde, Kopf- und Hals-Chirurgie e. V., 30. 4. – 4. 5. 2008, Bonn.
- 69 Osma U, Cureoglu S, Akbulut N, Meric F, Topcu I. The results of septal button insertion in the management of nasal septal perforation. J Laryngol Otol. 1999; 113 823-824
- 70 Ostwald J, Dommerich S, Nischan C, Kramp B. In vitro-Kultivierung von Zellen der respiratorischen Schleimhaut auf Matrizes aus Kollagen, Poly-L-Laktid (PLLA) und Polyhydroxybuttersäure (PHB). Laryngo-Rhino-Otologie. 2003; 82 693-699
- 71 Kim C H, Bae J H, Son S. et al . Use of PLGA scaffold for mucociliary epithelium transfer in airway reconstruction: a preliminary study. Acta Otolaryngol. 2006; 126 (6) 594-599
- 72 Bücheler M, Scheffler B, von Foerster U. et al . Growth of human respiratory epithelium on collagen foil. Laryngo-Rhino-Otologie. 2000; 79 (3) 160-164
- 73 Yildirim G, Haliloglu T, Sapci T. et al . Tracheal reconstruction with porous high-density polyethylene tracheal prosthesis. Ann Otol Rhinol Laryngol. 2000; 109 981-987
- 74 Suh S W, Kim J, Baek C H, Han J, Kim H. Replacement of a tracheal defect with autogenous mucosa lined tracheal prosthesis made from polypropylene mesh. ASAIO J. 2001; 47 (5) 496-500
- 75 Kaschke O, Gerhardt H J, Bohm K, Wenzel M, Planck H. Epithelialization of porous biomaterials with isolated respiratory epithelial cells in vivo. HNO. 1995; 43 80-88
- 76 Abdulcemal Isik U, Seren E, Kaklikkaya I. et al . Prosthetic reconstruction of the trachea in rabbit. J Cardiovasc Surg. 2002; 43 281-286
- 77 Tada Y, Suzuki T, Takezawa T. et al . Regeneration of tracheal epithelium utilizing a novel bipotential collagen scaffold. Ann Otol Rhinol Laryngol. 2008; 17 (5) 359-365
- 78 Yamashita M, Kanemaru S, Hirano S. et al . Tracheal regeneration after partial resection: a tissue engineering approach. Laryngoscope. 2007; 117 (3) 497-502
- 79 Omori K, Nakamura T, Kanemaru S. et al . Regenerative medicine of the trachea: the first human case. Ann Otol Rhinol Laryngol. 2005; 114 429-433
- 80 Dommerich S, Sternberg K, Kramp B, Ostwald J. Möglichkeiten des Wachstums von respiratorischen Epithelzellen auf artifiziellen Matrizes. Biomaterialien. 2005; 6 (S1) 70-71
Priv.-Doz. Dr. rer. nat. Katrin Sternberg
Institut für Biomedizinische
Technik
Universität Rostock
Friedrich-Barnewitz-Straße 4
18119 Rostock
Email: katrin.sternberg@uni-rostock.de