Eine große und sicherlich wachsende Zahl an Diabetikern treibt Sport in den Bergen. Dabei beeinflussen einige Faktoren die Regulation der Blutzuckerhomöostase bei Typ–1–Diabetikern, wie etwa eine nicht vorhersehbare körperliche Belastung, Mahlzeiten, die Wirksamkeit der Insuline, die Präzision der Blutzuckermessgeräte, extreme Temperaturen und schließlich die Höhe selbst. Dieser Artikel möchte den Einfluss von Aufenthalten in extremen Höhen auf die Blutzuckerhomöostase und deren Regulation bei Patienten mit Typ–1–Diabetes beleuchten.
An unknown and probably increasing number of diabetics frequent mountain areas and practice mountain–related sports. Regulation of type–1–diabetes mellitus in the mountains may well be affected by a number of factors such as unpredictable exercise load and meals, the efficiency of insulin and glucose meters, extreme temperatures and altitude itself. This review aims to identify the main issues facing a healthy and well–controlled type–1–diabetic mountaineer at high altitude.
Key words
diabetes mellitus - mountaineering - high altitude - ketoacidosis - acute mountain sickness
Literatur
1
ADA. .
American Diabetes Association Position Statement Diabetes Mellitus and Exercise.
Diabetes Care.
2004;
27
58-62
2
Brubaker PL..
Adventure Travel and Type 1 Diabetes.
Diabetes Care.
2005;
28
2563-2572
3
Leal C..
Going High with Type 1 Diabetes.
High Altitude Medicine & Biology.
2005;
6
14-21
4
Diamond MP, Hallarman L, Starick–Zych K. et al. .
Suppression of counterregulatory hormone response to hypoglycemia by insulin per se.
J Clin Endocrinol Metab.
1991;
72
1388-1390
5
Unger RH, Orci L..
Glucagon and the A cell: physiology and pathophysiology (2nd of 2 parts).
N Engl J Med.
1981;
304
1575-1580
6
Rose BD, Post TW..
Clinical physiology of acid–base and electrolyte disorders.
City: McGraw–Hill.
2001;
794
809-815
7
Foster DW..
Banting lecture 1984. From glycogen to ketones and back.
Diabetes.
1984;
33
1188-1199
8
Miles JM, Haymond MW, Nissen SL, Gerich JE..
Effects of free fatty acid availability, glucagon excess, and insulin deficiency on ketone body production in postabsorptive man.
J Clin Invest.
1983;
71
1554-1561
9
Owen OE, Trapp VE, Skutches CL. et al. .
Acetone metabolism during diabetic ketoacidosis.
Diabetes.
1982;
31
242-248
10
Barnholt KS, Hoffman AR, Rock PB. et al. .
Endocrine responses to acute and chronic high–altitude exposure (4,300 meters): modulating effects of caloric restriction.
Am J Physiol Endocrinol Metab.
2006;
290
1078-1088
11
Benso A, Broglio F, Aimaretti G. et al. .
Endocrine and metabolic responses to extreme altitude and physical exercise in climbers.
Eur J Endocrinol.
2007;
157
733-740
12
Arieff AI, Carroll HJ..
Nonketotic hyperosmolar coma with hyperglycemia: clinical features, pathophysiology, renal function, acid–base balance, plasma–cerebrospinal fluid equilibria and the effects of therapy in 37 cases.
Medicine (Baltimore).
1972;
51
73-94
13
Zierler KL, Rabinowitz D..
Effect of very small concentrations of insulin on forearm metabolism. Persistence of itsaAction on potassium and free fatty acids without its effect on glucose.
J Clin Invest.
1964;
43
14
Daugirdas JT, Kronfol NO, Tzamaloukas AH, Ing TS..
Hyperosmolar coma: cellular dehydration and the serum sodium concentration.
Ann Intern Med.
1989;
110
855-857
15
Fulop M, Tannenbaum H, Dreyer N..
Ketotic hyperosmolar coma.
Lancet.
1973;
2
635-639
16
Lavin PJ..
Hyperglycemic hemianopia: a reversible complication of non–ketotic hyperglycemia.
Neurology.
2005;
65
616-619
17
Umpierrez G, Freire AX..
Abdominal pain in patients with hyperglycemic crises.
J Crit Care.
2002;
17
63-67
18
Adrogue HJ, Lederer ED, Suki WN, Eknoyan G..
Determinants of plasma potassium levels in diabetic ketoacidosis.
Medicine (Baltimore).
1986;
65
163-172
19 Bojunga J, Badenhopp K, Althoff PH, Usadel KH.. Akute Stoffwechselentgleisungen. In: Mehnert H, Standl E, Usadel KH, Häring HU, Hrsg. Diabetologie in Klinik und Praxis. 5. Aufl. Stuttgart, New York: Georg Thieme Verlag 2003
20
Bilen H, Kilicaslan A, Akcay G, Albayrak F..
Performance of glucose dehydrogenase (GDH) based and glucose oxidase (GOX) based blood glucose meter systems at moderately high altitude.
J Med Eng Technol.
2007;
31
152-156
21
Fanghanel G, Silva U, Sanchez–Reyes L. et al. .
Effects of metformin on fibrinogen levels in obese patients with type 2 diabetes comparative accuracy of glucose monitors.
Rev Invest Clin.
1998;
50
389-394
22
Gautier JF, Bigard AX, Douce P. et al. .
Influence of simulated altitude on the performance of five blood glucose meters.
Diabetes Care.
1996;
19
1430-1433
23
Tang Z, Louie RF, Lee JH. et al. .
Oxygen effects on glucose meter measurements with glucose dehydrogenase– and oxidase–based test strips for point–of–care testing.
Crit Care Med.
2001;
29
1062-1070
24
Tang Z, Lee JH, Louie RF, Kost GJ..
Effects of different hematocrit levels on glucose measurements with handheld meters for point–of–care testing.
Arch Pathol Lab Med.
2000;
124
1135-1140
25
Tang Z, Du X, Louie RF, Kost GJ..
Effects of drugs on glucose measurements with handheld glucose meters and a portable glucose analyzer.
Am J Clin Pathol.
2000;
113
75-86
26
Leal C, Admetlla J, Viscor G, Ricart A..
Diabetic retinopathy at high altitude.
High Alt Med Biol.
2008;
9
24-27
27
Moore K, Vizzard N, Coleman C. et al. .
Extreme altitude mountaineering and Type 1 diabetes; the Diabetes Federation of Ireland Kilimanjaro Expedition.
Diabet Med.
2001;
18
749-755
Korrespondenz
Dr. Bodo Gutt
Städtisches Klinikum München–GmbH Klinikum Bogenhausen Abteilung für Endokrinologie, Diabetologie und Angiologie
Englschalkinger Str. 77
81925 München
Email: bodo.gutt@kh-bogenhausen.de