Subscribe to RSS
DOI: 10.1055/s-0028-1123990
© Georg Thieme Verlag KG Stuttgart · New York
Sphingolipide und deren medizinische Bedeutung
Sphingolipids and their medical impactPublication History
eingereicht: 17.6.2008
akzeptiert: 11.9.2008
Publication Date:
29 January 2009 (online)
Zusammenfassung
Sphingolipide sind bekannt für Ihre strukturgebende Funktion in Zellmembranen, haben aber auch Signaleigenschaften. Vor allem Sphingosin-1-phosphat (S1P) ist ein wichtiges extrazelluläres Signalmolekül, das fünf G-Protein-gekoppelte Zelloberflächenrezeptoren aktiviert und dadurch wichtige Körperfunktionen wie das kardiovaskuläre System, das Immunsystem, das Gehör und die Fertilität entscheidend beeinflussen. Die stringente Regulation von Rezeptor zugänglichem S1P, der Aufbau von Konzentrationsgradienten sowie das enge Zusammenspiel zwischen S1P und dessen Rezeptoren sind wichtige Voraussetzungen für eine Vielzahl von Prozessen. Pharmakologische und tierexperimentelle Studien haben gezeigt, dass die Beeinflussung von S1P-Konzentrationen in Blut und Organen sowie die veränderte Expression von S1P-Rezeptoren in bestimmten Zellsystemen Ursache, aber auch wirksames Gegenmittel von Krankheiten sein kann. Sphingolipide und deren Rezeptoren sind daher zunehmend Gegenstand medizinischer Forschung.
Summary
Sphingolipids are known to function as structural components in cell membranes, but they also have signalling properties. Sphingosine 1-phosphate (S1P), in particular, is an extracellular messenger that activates five G protein-coupled cell surface receptors, and regulates important physiological functions in the cardiovascular and immune system, in hearing, and fertility. Tight regulation of receptor-available S1P, establishment of concentration gradients and the close interplay between S1P and its receptors are necessary requirements in a multitude of processes. Pharmacological and genetic studies in animals have demonstrated that altered S1P concentrations in blood and organs, as well as mutated expression of S1P receptors in certain cell systems can be causative, but may also be efficacious medication in selected diseases. Sphingolipids and their receptors are, therefore, current targets for medical research.
Schlüsselwörter
Sphingosin-1-phosphat - Lymphozytenzirkulation - Lipoprotein - Sphingosinkinase - S1P-Lyase - Erythrozyt
Keywords
sphingosine 1-phosphate - lymphocyte circulation - lipoprotein - sphingosine kinase - S1P-lyase - erythrocyte
Literatur
- 1 Cinamon G, Zachariah M A, Lam O M. et al . Follicular shuttling of marginal zone B cells facilitates antigen transport. Nat Immunol. 2008; 9 54-62
- 2 Gräler M H, Goetzl E J. The immunosuppressant FTY720 down-regulates sphingosine 1-phosphate G-protein-coupled receptors. Faseb J. 2004; 18 551-553
- 3 Hänel P, Andréani P, Gräler M H. Erythrocytes store and release sphingosine 1-phosphate in blood. Faseb J. 2007; 21 1202-1209
- 4 Herr D R, Grillet N, Schwander M. et al . Sphingosine 1-phosphate (S1P) signaling is required for maintenance of hair cells mainly via activation of S1P2. J Neurosci. 2007; 27 1474-1478
- 5 Mandala S, Hajdu R, Bergstrom J. et al . Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science. 2002; 296 346-349
- 6 Matloubian M, Lo C G, Cinamon G. et al . Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature. 2004; 427 355-360
- 7 Mizugishi K, Li C, Olivera A. et al . Maternal disturbance in activated sphingolipid metabolism causes pregnancy loss in mice. J Clin Invest. 2007; 117 2993-3006
- 8 Morita Y, Perez G I, Paris F. et al . Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat Med. 2000; 6 1109-1114
- 9 Nofer J R, van der Giet M, Tolle M. et al . HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J Clin Invest. 2004; 113 569-581
- 10 Pappu R, Schwab S R, Cornelissen I. et al . Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science. 2007; 316 295-298
- 11 Sanna M G, Wang S K, Gonzalez-Cabrera P J. et al . Enhancement of capillary leakage and restoration of lymphocyte egress by a chiral S1P1 antagonist in vivo. Nat Chem Biol. 2006; 2 434-441
- 12 Schwab S R, Pereira J P, Matloubian M. et al . Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science. 2005; 309 1735-1739
- 13 Venkataraman K, Lee Y M, Michaud J. et al . Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ Res. 2008; 102 669-676
- 14 Visentin B, Vekich J A, Sibbald B J. et al . Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell. 2006; 9 225-238
- 15 Young N, Van Brocklyn J R. Signal transduction of sphingosine-1-phosphate G protein-coupled receptors. ScientificWorldJournal. 2006; 6 946-966
Dr. rer. nat. Markus H. Gräler
Institut für Immunologie, Medizinische
Hochschule Hannover OE 9422
Carl-Neuberg-Str.
1
30625 Hannover
Phone: 0511/532-9779
Fax: 0511/532-9783
Email: graeler.markus@mh-hannover.de