Exp Clin Endocrinol Diabetes 2010; 118(2): 105-112
DOI: 10.1055/s-0029-1202791
Article

© J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

Oral Phosphate Supplementation Corrects Hypophosphatemia and Normalizes Plasma FGF23 and 25-Hydroxyvitamin D3 Levels in Women with Chronic Metabolic Acidosis

S. Domrongkitchaiporn 1 , 2 , S. Disthabanchong 2 , R. Cheawchanthanakij 2 , K. Niticharoenpong 2 , W. Stitchantrakul 2 , N. Charoenphandhu 1 , 3 , N. Krishnamra 1 , 3
  • 1Consortium for Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok, Thailand
  • 2Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
  • 3Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
Further Information

Publication History

received 18.082008 first decision 23.10.2008

accepted 22.01.2009

Publication Date:
15 May 2009 (online)

Abstract

Background: Chronic metabolic acidosis (CMA) is known to induce renal phosphate wasting and hypophosphatemia by enhancing bone resorption and inhibiting renal phosphate reabsorption. However, nothing is known regarding changes in the plasma levels of phosphate-regulating hormones during CMA, especially in humans with normal kidney function.

Methods: Fifteen healthy Thai female volunteers were given NH4Cl orally for 7 days to induce CMA with or without oral phosphate supplementation. Blood and 24-h urine specimens were collected prior to and after CMA induction. Plasma concentrations and fractional excretion of calcium and inorganic phosphate as well as plasma levels of fibroblast growth factor (FGF) 23, 25(OH)D3, 1,25(OH)2D3 and intact parathyroid hormone (iPTH) were determined.

Results: CMA led to hypophosphatemia and hypocalcemia with increases in the fractional excretion of calcium and phosphate. Plasma concentrations of FGF23, 25(OH)D3 and iPTH were decreased, whereas that of 1,25(OH)2D3 was increased. After oral phosphate supplementation, CMA-induced changes in the concentrations of the studied ions, FGF23 and 25(OH)D3, but not those of 1,25(OH)2D3 and iPTH, were diminished.

Conclusions: The CMA-induced hypophosphatemia was likely to initiate a negative feedback response, thereby leading to reduction in the plasma levels of hyperphosphaturic hormones, FGF23 and PTH. An increase in the plasma 1,25(OH)2D3 level, despite diminishing 25(OH)D3 storage pool, may help enhance the intestinal phosphate absorption. Oral phosphate supplementation abolished the effects of CMA on FGF23 and 25(OH)D3 levels, suggesting that the plasma phosphate concentration is the primary regulator of the plasma levels of these hormones during CMA.

References

  • 1 Ambühl PM, Zajicek HK, Wang H. et al . Regulation of renal phosphate transport by acute and chronic metabolic acidosis in the rat.  Kidney Int. 1998;  53 1288-1298
  • 2 Bushinsky DA, Krieger NS, Geisser DI. et al . Effects of pH on bone calcium and proton fluxes in vitro.  Am J Physiol. 1983;  245 F204-F209
  • 3 Bushinsky DA, Nalbantian-Brandt C, Favus MJ. Elevated Ca2+ does not inhibit the 1,25(OH)2D3 response to phosphorus restriction.  Am J Physiol. 1989;  256 F285-F289
  • 4 Bushinsky DA, Smith SB, Gavrilov KL. et al . Chronic acidosis-induced alteration in bone bicarbonate and phosphate.  Am J Physiol Renal Physiol. 2003;  285 F532-F539
  • 5 Charoenphandhu N, Tudpor K, Pulsook N. et al . Chronic metabolic acidosis stimulated transcellular and solvent drag-induced calcium transport in the duodenum of female rats.  Am J Physiol Gastrointest Liver Physiol. 2006;  291 G446-G455
  • 6 Charoenphandhu N, Wongdee K, Tudpor K. et al . Chronic metabolic acidosis upregulated claudin mRNA expression in the duodenal enterocytes of female rats.  Life Sci. 2007;  80 1729-1737
  • 7 Cunningham J, Bikle DD, Avioli LV. Acute, but not chronic, metabolic acidosis disturbs 25-hydroxyvitamin D3 metabolism.  Kidney Int. 1984;  25 47-52
  • 8 Eto N, Tomita M, Hayashi M. NaPi-mediated transcellular permeation is the dominant route in intestinal inorganic phosphate absorption in rats.  Drug Metab Pharmacokinet. 2006;  21 217-221
  • 9 Feldman GM, Charney AN. Effect of acute metabolic alkalosis and acidosis on intestinal electrolyte transport in vivo.  Am J Physiol. 1980;  239 G427-G436
  • 10 Felsenfeld AJ, Rodriguez M. Phosphorus, regulation of plasma calcium, and secondary hyperparathyroidism: a hypothesis to integrate a historical and modern perspective.  J Am Soc Nephrol. 1999;  10 878-890
  • 11 Fukumoto S. Physiological regulation and disorders of phosphate metabolism – pivotal role of fibroblast growth factor 23.  Intern Med. 2008;  47 337-343
  • 12 Ghishan FK. Phosphate transport by plasma membranes of enterocytes during development: role of 1,25-dihydroxycholecalciferol.  Am J Clin Nutr. 1992;  55 873-877
  • 13 Goldhaber P, Rabadjija L. H+ stimulation of cell-mediated bone resorption in tissue culture.  Am J Physiol. 1987;  253 E90-E98
  • 14 Hoenderop JG, Nilius B, Bindels RJ. Calcium absorption across epithelia.  Physiol Rev. 2005;  85 373-422
  • 15 Hu MS, Kayne LH, Jamgotchian N. et al . Paracellular phosphate absorption in rat colon: a mechanism for enema-induced hyperphosphatemia.  Miner Electrolyte Metab. 1997;  23 7-12
  • 16 Kinoshita Y, Masuoka K, Miyakoshi S. et al . Vitamin D insufficiency underlies unexpected hypocalcemia following high dose glucocorticoid therapy.  Bone. 2008;  42 226-228
  • 17 Kleger GR, Turgay M, Imoberdorf R. et al . Acute metabolic acidosis decreases muscle protein synthesis but not albumin synthesis in humans.  Am J Kidney Dis. 2001;  38 1199-1207
  • 18 Kolek OI, Hines ER, Jones MD. et al . 1α,25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport.  Am J Physiol Gastrointest Liver Physiol. 2005;  289 G1036-G1042
  • 19 Koyama H, Nishizawa Y, Inaba M. et al . Impaired homologous upregulation of vitamin D receptor in rats with chronic renal failure.  Am J Physiol. 1994;  266 F706-F712
  • 20 Lin SH, Halperin ML. Hypokalemia: a practical approach to diagnosis and its genetic basis.  Curr Med Chem. 2007;  14 1551-1565
  • 21 Litkowski LJ, Wilson TL. Effect of protein on titrimetry of bicarbonate, titratable acid, and ammonium in urine.  Clin Chem. 1979;  25 362-365
  • 22 Lund B, Sørensen OH, Bishop JE. et al . Stimulation of 1,25-dihydroxyvitamin D production by parathyroid hormone and hypocalcemia in man.  J Clin Endocrinol Metab. 1980;  50 480-484
  • 23 Nijenhuis T, Renkema KY, Hoenderop JG. et al . Acid-base status determines the renal expression of Ca2+ and Mg2+ transport proteins.  J Am Soc Nephrol. 2006;  17 617-626
  • 24 Nowik M, Picard N, Stange G. et al . Renal phosphaturia during metabolic acidosis revisited: molecular mechanisms for decreased renal phosphate reabsorption.  Pflügers Arch. 2008;  457 539-549
  • 25 Osther PJ. Effect of acute acid loading on acid-base and calcium metabolism.  Scand J Urol Nephrol. 2006;  40 35-44
  • 26 Perwad F, Azam N, Zhang MY. et al . Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice.  Endocrinology. 2005;  146 5358-5364
  • 27 Perwad F, Zhang MY, Tenenhouse HS. et al . Fibroblast growth factor 23 impairs phosphorus and vitamin D metabolism in vivo and suppresses 25-hydroxyvitamin D-1α-hydroxylase expression in vitro.  Am J Physiol Renal Physiol. 2007;  293 F1577-F1583
  • 28 Razzaque MS, Lanske B. The emerging role of the fibroblast growth factor-23-klotho axis in renal regulation of phosphate homeostasis.  J Endocrinol. 2007;  194 1-10
  • 29 Riccardi D, Traebert M, Ward DT. et al . Dietary phosphate and parathyroid hormone alter the expression of the calcium-sensing receptor (CaR) and the Na+-dependent Pi transporter (NaPi-2) in the rat proximal tubule.  Pflügers Arch. 2000;  441 379-387
  • 30 Rizzo M, Capasso G, Bleich M. et al . Effect of chronic metabolic acidosis on calbindin expression along the rat distal tubule.  J Am Soc Nephrol. 2000;  11 203-210
  • 31 Rodriguez M, Canadillas S, Lopez I. et al . Regulation of parathyroid function in chronic renal failure.  J Bone Miner Metab. 2006;  24 164-168
  • 32 Saito H, Maeda A, Ohtomo S. et al . Circulating FGF-23 is regulated by 1α,25-dihydroxyvitamin D3 and phosphorus in vivo.  J Biol Chem. 2005;  280 2543-2549
  • 33 Shaikh A, Berndt T, Kumar R. Regulation of phosphate homeostasis by the phosphatonins and other novel mediators.  Pediatr Nephrol. 2008;  23 1203-1210
  • 34 Stauber A, Radanovic T, Stange G. et al . Regulation of intestinal phosphate transport. II. Metabolic acidosis stimulates Na+-dependent phosphate absorption and expression of the Na+-Pi cotransporter NaPi-IIb in small intestine.  Am J Physiol Gastrointest Liver Physiol. 2005;  288 G501-G506
  • 35 Wiederkehr M, Krapf R. Metabolic and endocrine effects of metabolic acidosis in humans.  Swiss Med Wkly. 2001;  131 127-132

Correspondence

N. Charoenphandhu
MD, PhD  and
N. KrishnamraPhD 

Consortium for Calcium and Bone Research

Faculty of Science, Mahidol University

Rama VI Road

Bangkok 10400

Thailand

Phone: +66/2/354 71 54

Fax: +66/2/354 71 54

Email: naratt@narattsys.com (NC)

Email: scnks@mahidol.ac.th (NK)