Int J Sports Med 2009; 30(8): 598-601
DOI: 10.1055/s-0029-1214378
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

The Critical Velocity and 1 500-m Surface Performances in Finswimming

K. Oshita 1 , 3 , M. Ross 2 , 3 , K. Koizumi 4 , S. Kashimoto 3 , S. Yano 1 , K. Takahashi 5 , M. Kawakami 6
  • 1Graduate School of Human Development and Environment, Division of Human Environmental Science, Kobe University, Kobe, Japan
  • 2TORAY Industries, Inc., Otsu, Japan
  • 3Kansaikieikai, Osaka, Japan
  • 4Department of Lifelong Sports and Recreation, Nippon Sports Science University, Tokyo, Japan
  • 5Faculty of Health Sciences, Department of Judo-Seihuku Therapy, Tokyo Ariake University of Medical and Health Sciences, Tokyo, Japan
  • 6Graduate School of Science and Humanities, Kurashiki University of Science and the Arts, Kurashiki, Japan
Further Information

Publication History

accepted after revision February 3, 2009

Publication Date:
25 May 2009 (online)

Abstract

The purpose of this investigation was to determine whether the concepts of critical velocity (CV) and anaerobic swimming capacity (ASC) could be used by coaches as a reliable index in order to monitor 1500-m Surface (SF) performances in Finswimming. Thirteen Finswimmers (6 males and 7 females, 24±6 years), members of the Japanese national team, were instructed to swim three different swimming distances (400-, 800-, and 1500-m) at maximal effort in a 50m long course swimming pool. CV and the ASC were calculated using 400-m and 800-m swim times. Mean height and body mass were 170.2 cm and 69.7 kg in male and 160.5 and 61.0 kg in female. A highly positive correlation was found between the CV and the mean velocity of 1500-m SF (V1500) (r=0.91, P<0.01), but no correlation was found between the ASC and V1500. (r=0.46, P=0.11). However, a high correlation was found between the ASC and the residual error of V1500, calculated from the relationship between V1500 and the CV (r=0.89, P<0.01). These results suggest that the CV is a useful method for evaluating 1500-m SF performance and an aerobic performance expressed as the CV contributes to 1500-m SF performance

References

  • 1 Atkinson G, Reilly T. Circadian variation in sports performance.  Sports Med. 1998;  21 292-312
  • 2 Bishop D, Jenkins DG, Howard A. The critical power function is dependent on the duration of the predictive exercise tests chosen.  Int J Sports Med. 1998;  19 125-129
  • 3 Dekerle J, Sidney M, Hespel JM, Pelayo P. Validity and reliability of critical speed, critical stroke rate, and anaerobic capacity in relation to front crawl swimming performances.  Int J Sports Med. 2002;  23 93-98
  • 4 Dekerle J. The use of critical velocity in swimming: A place for critical stroke rate?. In: Vilas-Boas JP, Alves F, Marques A, eds. Biomechanics and Medicine in Swimming X. Rev Port Cien Desp 2006 6 (Suppl. 2) 201-205
  • 5 di Prampero PE, Dekerle J, Capelli C, Zamparo P. The critical velocity in swimming.  Eur J Appl Physiol. 2007;  28 1439-6319
  • 6 Hill DW. The critical power concept.  A review. Sports Med. 1993;  16 237-254
  • 7 Holmer AP. Energetics and mechanical work in swimming. In: Biomechanics and Medicine in Swimming, Human Kinetics. Champaign III 1983: 154-164
  • 8 Jenkins DG, Quigley BM. Blood lactate in trained cyclists during cycle ergometry at critical power.  Eur J Appl Physiol.. 1990;  61 278-283
  • 9 Kachouri M, Vandewalle H, Billat V, Huet M, Thomaïdis M, Jousselin E, Monod H. Critical velocity of continuous and intermittent running exercise. An example of the limits of the critical power concept.  Eur J Appl Physiol. 1996;  73 484-487
  • 10 Kolbe T, Dennis SC, Selley E, Noakes TD, Lambert MI. The relationship between critical power and running performance.  J Sports Sci. 1995;  13 265-269
  • 11 Martin L, Whyte GP. Comparison of critical swimming velocity and velocity at lactate threshold in elite triathletes.  Int J Sports Med. 2000;  21 366-368
  • 12 Miura A, Endo M, Sato H, Sato H, Barstow TJ, Fukuba Y. Relationship between the curvature constant parameter of the power-duration curve and muscle cross-sectional area of the thigh for cycle ergometry in humans.  Eur J Appl Physiol. 2002;  87 238-244
  • 13 Monod H, Scherre J. The work capacity of a synergic muscular group.  Ergonomics. 1965;  8 329-337
  • 14 Moritani T, Nagata A, Devries HA, Muro M. Critical power as a measure of physical work capacity and anaerobic threshold.  Ergonomics. 1981;  24 339-350
  • 15 Morton RH. A 3-parameter critical power model.  Ergonomics. 1996;  39 611-619
  • 16 Olbrecht J, Madsen O, Mader A, Liesel H, HollmanW. Relationship between swimming velocity and lactic acid concentration during continuous and intermittent training exercise.  Int J Sports Med. 1985;  6 74-77
  • 17 Oshita K, Ross M, Koizumi K, Kashimoto S, Takahashi K, Kawakami M. A record characteristic of the finswimming, compared with a swimming (free-style and butterfly). The Proceedings of the 2007 Annual Meetings of Japanese Society of Sciences in Swimming and Water Exercise. 2007;  45-48 , (in Japanese)
  • 18 Shimoda M, Kawakami Y. Critical power determination with ergometry rowing: relation to rowing performance.  Int J Sport Health Sci. 2005;  3 21-26
  • 19 Smith CG, Jones AM. The relationship between critical velocity, maximal lactate steady-state velocity and lactate turnpoint velocity in runners.  Eur J Appl Physiol. 2001;  85 19-26
  • 20 Vandewalle H, Kapitaniak B, Grün S, Raveneau S, Monod H. Comparison between a 30-s all-out test and a time-work test on a cycle ergometer.  Eur J Appl Physiol. 1989;  58 375-381
  • 21 Vandewalle H, Vautier JF, Kachouri M, Lechevalier JM, Monod H. Work-exhaustion time relationships and the critical power concept.  A critical review. J Sports Med Phys Fitness. 1997;  37 89-102
  • 22 Wakayoshi K, Ikuta K, Yoshida T, Udo M, Moritani T, Mutoh Y, Miyashita M. Determination and validity of critical velocity as an index of swimming performance in the competitive swimmer.  Eur J Appl Physiol. 1992;  64 153-157
  • 23 Wakayoshi K, Yoshida T, Udo M, Harada T, Moritani T, Mutoh Y, Miyashita M. Does critical swimming velocity represent exercise intensity at maximal lactate steady state?.  Eur J Appl Physiol. 1993;  66 90-95
  • 24 World Underwater Federation .In: Finswimming international rules. World Underwater Federation;. 2006

Correspondence

K. Oshita

Graduate School of Human Development and Environment

Division of Human Environmental Science

3-11 Tsurukabuto

Nada-ku

Kobe

Japan

657-8501

Phone: +81/078/803 77 69

Fax: +81/078/803 77 69

Email: 062d844d@stu.kobe-u.ac.jp