Subscribe to RSS
DOI: 10.1055/s-0029-1216830
The Catalytic Potential of 4-Guanidinylpyridines in Acylation Reactions
Publication History
Publication Date:
19 May 2009 (online)
Abstract
A series of 3-alkyl-4-guanidinylpyridines with variable alkylation pattern have been synthesized and characterized with respect to their catalytic potential in acylation reactions of alcohols. The ability of the substitution pattern to stabilize acylpyridinium cations, which act as critical intermediates in the catalytic cycle of pyridine-catalyzed acylation reactions, has been assessed at the MP2(FC)/6-31+G(2d,p)//B98/6-31G(d) level of theory and inclusion of solvent effects in chloroform using the PCM continuum solvation model. The most active 4-guanidinylpyridines are among those having the most electron-rich pyridine ring. The influence of the type and concentration of the auxiliary base on the catalytic activity has also been studied. While the change from triethylamine to N,N-diisopropylethylamine as the auxiliary base does not lead to a systematic increase or decrease in the catalytic rates, the complete absence of auxiliary base leads to a 27-fold reduction in reaction rate.
Key words
esterification - Lewis bases - ab initio calculations - kinetics
- Supporting Information for this article is available online:
- Supporting Information
- 1
Otera J. Esterification: Methods, Reactions and Applications Wiley-VCH; Weinheim: 2003. - For reviews see:
-
2a
Höfle G.Steglich W.Vorbrüggen H. Angew. Chem., Int. Ed. Engl. 1978, 17: 569 ; Angew. Chem. 1978, 90, 602 -
2b
Scriven EFV. Chem. Soc. Rev. 1983, 129 -
2c
Hassner A. In Encyclopedia of Reagents for Organic Synthesis Wiley; Chichester: 1995. p.2022-2024 -
2d
Ragnarsson U.Grehn L. Acc. Chem. Res. 1998, 31: 494 -
2e
Spivey AC.Maddaford A.Redgrave A. Org. Prep. Proced. Int. 2000, 32: 331 -
2f
Berry DJ.Digiovanna CV.Metrick SS.Murugan R. ARKIVOC 2001, (i): 201 -
2g
Spivey AC.Arseniyadis S. Angew. Chem. Int. Ed. 2004, 43: 5436 ; Angew. Chem. 2004, 116, 5552 -
3a
Kawabata T.Muramatsu W.Nishio T.Shibata T.Uruno Y.Stragies R. Synthesis 2008, 747 -
3b
Muramatsu W.Kawabata T. Tetrahedron Lett. 2007, 48: 5031 -
3c
Kawabata T.Muramatsu W.Nishio T.Shibata T.Schedel H. J. Am. Chem. Soc. 2007, 129: 12890 -
4a
Lewis CA.Miller S. Angew. Chem. Int. Ed. 2006, 45: 5616 -
4b
Griswold KS.Miller SJ. Tetrahedron 2003, 59: 8869 - 5
Kattnig E.Albert M. Org. Lett. 2004, 6: 945 -
6a
Kurahashi T.Mizutani T.Yoshida J. J. Chem. Soc., Perkin Trans. 1 1999, 465 -
6b
Kurahashi T.Mizutani T.Yoshida J. Tetrahedron 2002, 58: 8669 - 7
Wurz RP. Chem. Rev. 2007, 107: 5570 - 8
Hassner A.Krepski LR.Alexanian V. Tetrahedron 1978, 34: 2069 - 9
Heinrich MR.Klisa HS.Mayr H.Steglich W.Zipse H. Angew. Chem. Int. Ed. 2003, 42: 4826 ; Angew. Chem. 2003, 115, 4975 - 10
Held I.Villinger A.Zipse H. Synthesis 2005, 1425 - 11
Brotzel F.Kempf B.Singer T.Zipse H.Mayr H. Chem. Eur. J. 2007, 13: 336 - 12
Xu S.Held I.Kempf B.Mayr H.Steglich W.Zipse H. Chem. Eur. J. 2005, 11: 4751 - 13
Turner JA. J. Org. Chem. 1983, 48: 3401 - 14
Isobe T.Ishikawa T. J. Org. Chem. 1999, 64: 6984 - 15
Tang Z.Jiang F.Cui X.Gong L.-Z.Mi A.-Q.Jiang Y.-Z.Wu Y.-D. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 5755 - 16
Gryko D.Lipinski R. Eur. J. Org. Chem. 2006, 3864 - 17
Isobe T.Fukuda K.Ishikawa T. J. Org. Chem. 2000, 65: 7770 - 18
Held I.Xu S.Zipse H. Synthesis 2007, 1185 - 19
Sakakura A.Kawajiri K.Ohkubo T.Kosugi Y.Ishihara K. J. Am. Chem. Soc. 2007, 129: 14775 - 20
Lamaty G.Mary F.Roque JP. J. Chim. Phys. Phys.-Chim. Biol. 1991, 88: 1793 - 21
Müller CE.Wanka L.Jewell K.Schreiner PR. Angew. Chem. Int. Ed. 2008, 47: 6180 -
22a
Spivey AC.Arseniyadis S.Fekner T.Maddaford A.Leese DP. Tetrahedron 2006, 62: 295 -
22b
Spivey AC.Leese DP.Zhu F.Daveya SG.Jarvest RL. Tetrahedron 2004, 60: 4513 -
22c
Spivey AC.Zhu F.Mitchell MB.Davey SG.Jarvest RL. J. Org. Chem. 2003, 68: 7379 - 23
Kagan HB.Fiaud JC. Top. Stereochem. 1988, 18: 249 - 24
Gaussian 03, Revision C.02.
Gaussian
Inc.;
Wallingford CT:
2004.
- 25
Kantlehner W.Greiner U. Synthesis 1979, 339 - 26
Isobe T, andKeiko F. inventors; JP 10,120,678. - 27
Cancès MT.Mennucci B.Tomasi J. J. Chem. Phys. 1997, 107: 3032 - 28
Mennucci B.Tomasi J. J. Chem. Phys. 1997, 106: 5151 - 29
Cossi M.Barone V.Mennucci B.Tomasi J. Chem. Phys. Lett. 1998, 286: 253 -
30a
Amovilli C.Barone V.Cammi R.Cances E.Cossi M.Mennucci B.Pomelli CS.Tomasi J. Adv. Quantum Chem. 1998, 32: 227 -
30b
Cossi M.Scalmani G.Rega N.Barone V. J. Chem. Phys. 2002, 117: 43
References
Use of the data points describing acetylation of the guanidinyl group leads to an inferior correlation described by the equation ΔH 298 = -3.960 ln(1/t 1/2) - 91.13 kJ/mol; R² = 0.28.