Synthesis 2009(13): 2283-2288  
DOI: 10.1055/s-0029-1216847
PSP
© Georg Thieme Verlag Stuttgart ˙ New York

Ruthenium-Catalyzed Addition of Primary Amides to Alkynes: A Stereoselective Synthesis of Secondary Enamides

Lukas J. Gooßen*, Mathieu Blanchot, Kifah S. M. Salih, Käthe Gooßen
Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße 54, 67663 Kaiserslautern, Germany
Fax: +49(631)3921; e-Mail: goossen@chemie.uni-kl.de;
Further Information

Publication History

Received 13 March 2009
Publication Date:
29 May 2009 (online)

Abstract

The anti-Markovnikov addition of primary amides to terminal alkynes under the formation of Z-configured secondary enamides is efficiently promoted by a catalyst system generated in situ from bis(2-methallyl)(cycloocta-1,5-diene)ruthenium(II), 1,4-bis(dicyclohexylphosphino)butane, and ytterbium triflate. The thermodynamically more stable E-isomers are accessible by combining the above hydro­amidation with an in situ double-bond isomerization reaction, using triethylamine and molecular sieves.

    References

  • 1 Yet L. Chem. Rev.  2003,  103:  4283 
  • For reviews, see:
  • 2a Faulkner DJ. Nat. Prod. Rep.  1999,  16:  155 
  • 2b Faulkner DJ. Nat. Prod. Rep.  2000,  17:  7 
  • For traditional syntheses of enamides, see:
  • 3a Dupau P. Le Gendre P. Bruneau C. Dixneuf PH. Synlett  1999,  1832 
  • 3b Wang X. Porco JA. J. Org. Chem.  2001,  66:  8215 
  • 3c Bayer A. Maier ME. Tetrahedron  2004,  60:  6665 
  • 3d Boeckman RK. Goldstein SW. Walters MA. J. Am. Chem. Soc.  1988,  110:  8250 
  • 3e Kinderman SS. van Maarseveen JH. Schoemaker HE. Hiemstra H. Rutjes FPJT. Org. Lett.  2001,  3:  2045 
  • 4 Kondo T. Tanaka A. Kotachi S. Watanabe Y. J. Chem. Soc., Chem. Commun.  1995,  413 
  • 5a Gooßen LJ. Rauhaus JE. Deng G. Angew. Chem. Int. Ed.  2005,  44:  4042 
  • 5b Gooßen LJ. Arndt M. Blanchot M. Rudolphi F. Menges F. Niedner-Schatteburg G. Adv. Synth. Catal.  2008,  350:  2701 
  • 6 Gooßen LJ. Blanchot M. Brinkmann C. Gooßen K. Karch R. Rivas-Nass A. J. Org. Chem.  2006,  71:  9506 
  • 7 Gooßen LJ. Blanchot M. Salih KSM. Karch R. Rivas-Nass A. Org. Lett.  2008,  10:  4497 
  • For related additions of other nucleophiles to alkynes, see:
  • 8a Mitsudo T.-A. Hori Y. Watanabe Y. J. Org. Chem.  1985,  50:  1566 
  • 8b Doucet H. Derrien N. Kabouche Z. Bruneau C. Dixneuf PH. J. Organomet. Chem.  1997,  551:  151 
  • 8c Gooßen LJ. Paetzold J. Koley D. Chem. Commun.  2003,  706 
  • 8d Tokunaga M. Suzuki T. Koga N. Fukushima T. Horiuchi A. Wakatsuki Y. J. Am. Chem. Soc.  2001,  123:  11917 
  • 8e Suzuki T. Tokunaga M. Wakatsuki Y. Org. Lett.  2001,  3:  735 
  • 8f Pohlki F. Doye S. Chem. Soc. Rev.  2003,  32:  104 
  • 8g Müller TE. Hultzsch KC. Yus M. Foubelo F. Tada M. Chem. Rev.  2008,  108:  3795 
  • 9 Gooßen LJ. Salih KSM. Blanchot M. Angew. Chem. Int. Ed.  2008,  47:  8492 
  • 10a Lin J.-H. Phytochemistry  1989,  28:  621 
  • 10b Stefanuti I. Smith SA. Taylor RJK. Tetrahedron Lett.  2000,  41:  3735 
  • 10c Fürstner A. Brehm C. Cancho-Grande Y. Org. Lett.  2001,  3:  3955 
  • 11a Ghosh S. Datta DB. Sen N. Synth. Commun.  1987,  17:  299 
  • 11b Maxwell A. Rampersad D. J. Nat. Prod.  1989,  52:  411 
  • 11c Estévez JC. Villaverde MC. Estévez RJ. Seijas JA. Castedo L. Synth. Commun.  1990,  20:  503 
  • 12 Overman LE. Clizbe LA. Freerks RL. Marlowe CK. J. Am. Chem. Soc.  1981,  103:  2807