Synthesis 2009(23): 3941-3956  
DOI: 10.1055/s-0029-1216990
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Enantiospecific Synthesis of a Novel Rearranged Eunicellane Diterpenoid by SmI2-Mediated Cyclization

Elisabeth Schöttner, Peter G. Jones, Thomas Lindel*
Technische Universität Braunschweig, Institutes of Organic, Inorganic and Analytical Chemistry, Hagenring 30, 38106 Braunschweig, Germany
Fax: +49(531)3917744; e-Mail: Th.Lindel@tu-bs.de;
Further Information

Publication History

Received 16 June 2009
Publication Date:
03 September 2009 (online)

Abstract

Aiming at the assembly of marine-derived diterpenoids, the synthesis and cyclization of α-geranylated carvones was investigated. 3-Hydroxyalkylation of side-chain hydrogenated carvone with geraniol-derived aldehydes gave access to diterpenoid allyl phosphates. It was shown that retro-aldol fragmentation of ring-hydrogenated 3-hydroxyalkylcarvones is surprisingly facile, because the preferred conformation resembles a Zimmerman-Traxler type transition-state. The hitherto unknown rearranged eunicellane skeleton can be obtained in one step by treatment of an α,β-unsaturated diterpenoid with samarium diiodide generated in situ in THF. NOESY­-based structure analysis revealed the presence of an ansa bridge across a twist-boat six-membered ring.

    References

  • 1 The oxygen-bridged skeletons of eunicellin and cladiellin are identical, see: Bernardelli P. Moradei OM. Friedrich D. Yang J. Gallou F. Dyck BP. Doskotch RW. Lange T. Paquette LA. J. Am. Chem. Soc.  2001,  123:  9021 
  • 2 Ortega MJ. Zubía E. Salvá J. J. Nat. Prod.  1997,  60:  485 
  • 3 Lindel T. Jensen PR. Fenical W. Long BH. Casazza AM. Carboni J. Fairchild CR. J. Am. Chem. Soc.  1997,  119:  8744 
  • 4a MacMillan DWC. Overman LE. J. Am. Chem. Soc.  1995,  117:  10391 
  • 4b Nicolaou KC. van Delft F. Ohshima T. Vourloumis D. Xu J. Hosokawa S. Pfefferkorn J. Kim S. Li T. Angew. Chem. Int. Ed. Engl.  1997,  36:  2520 
  • 4c Chen X.-T. Zhou B. Bhattacharya SK. Gutteridge CE. Pettus TRR. Danishefsky SJ. Angew. Chem. Int. Ed.  1998,  37:  789 
  • 4d Corminboeuf O. Overman LE. Pennington LD. J. Am. Chem. Soc.  2003,  125:  6650 
  • 4e Crimmins MT. Brown BH. J. Am. Chem. Soc.  2004,  126:  10264 
  • 4f Kim H. Lee H. Kim J. Kim S. Kim D. J. Am. Chem. Soc.  2006,  128:  15851 
  • 4g Clark JS. Hayes ST. Wilson C. Gobbi L. Angew. Chem. Int. Ed.  2007,  46:  437 
  • 4h Becker J. Bergander K. Fröhlich R. Hoppe D. Angew. Chem. Int. Ed.  2008,  47:  1654 
  • 4i Molander GA. Jean DJS. Haas J. J. Am. Chem. Soc.  2004,  126:  1642 
  • For leading references, see:
  • 5a Gilmour R. Prior TJ. Burton JW. Holmes AB. Chem. Commun.  2007,  3954 
  • 5b Ellis JM. Crimmins MT. Chem. Rev.  2008,  108:  5278 
  • 6 For cyclization of cembranoids to eunicellanoids, see: Shpatov AV. Shakirov MM. Raldugin VA. Russ. J. Org. Chem.  2000,  36:  1163 ; and references cited therein
  • 7 Araki S. Hatano M. Ito H. Butsugan Y. J. Organomet. Chem.  1987,  333:  329 
  • 8 Umbreit MA. Sharpless KB. J. Am. Chem. Soc.  1977,  99:  5526 
  • 9 For retro-aldol addition with carvone derivatives, see: Quesnel Y. Toupet L. Duhamel L. Duhamel P. Poirier J.-M. Tetrahedron: Asymmetry  1999,  10:  1015 
  • 10a Chai Y. Vicic DA. McIntosh MC. Org. Lett.  2003,  5:  1039 
  • 10b Chai Y. McIntosh MC. Tetrahedron Lett.  2004,  45:  3269 
  • 11 For ent-18, see: Fang L. Bi F. Zhang C. Zheng G. Li Y. Synlett  2006,  2655 
  • 12a Shing TKM. Tang Y. Malone JF. J. Chem. Soc., Chem. Commun.  1989,  1294 
  • 12b Shing TKM. Zhu XY. Yeung YY. Chem. Eur. J.  2003,  9:  5489 
  • 13 Abad A. Agulló C. Cuñat AC. de Alfonso Marzal I. Navarro I. Gris A. Tetrahedron  2006,  62:  3266 
  • 16 Ren P.-D. Pan S.-F. Dong T.-W. Wu S.-H. Synth. Commun.  1995,  25:  3395 
  • 17 Friedel M. Golz G. Mayer P. Lindel T. Tetrahedron Lett.  2005,  46:  1623 
  • 18 Yoshida A. Hanamoto T. Inanaga J. Mikami K. Tetrahedron Lett.  1998,  39:  1777 
  • 19 For an example from the cyclophane field, see: Ueda T. Kanomata N. Machida H. Org. Lett.  2005,  7:  2365 
  • 20a Molander GA. McKie JA. J. Org. Chem.  1995,  60:  872 
  • 20b Sato A. Masuda T. Arimoto H. Uemura D. Org. Biomol. Chem.  2005,  3:  2231 
  • 21 Sheldrick GM. Acta Crystallogr., Sect A  2008,  64:  112 
14

The high value for ³ J OH-7H (11-12 Hz) in all eight examples reflects the antiperiplanar arrangement of the two protons. The ³ J 3H-7H coupling constants are very small (1-2 Hz) as expected for cis-fused six-membered rings. ³ J 3H-4H coupling constants show values between 11 and 12 Hz due to diaxial arrangement.

15

³ J OH-CH Coupling constants vary from 3 to 9 Hz indicating that hydrogen-bridged six-membered rings are not as dominant as in the cyclohexanone case. The ³ J 3H-4H coupling constants of cyclohexenone-type carvones reach values between 2 and 5 Hz. The absence of NOESY correlations between any of the diastereotopic protons 5a-H/5b-H and
3-H rules out axial positioning of 3-H. ³ J coupling constants between 8 and 10 Hz are consistent with an antiperiplanar arrangement of 3-H and the carbinol-H of the side chain.