Synthesis 2009(21): 3708-3718  
DOI: 10.1055/s-0029-1216999
PSP
© Georg Thieme Verlag Stuttgart ˙ New York

Cyclopropanation with Dibromomethane under Grignard and Barbier Conditions

Gerhard Brunner, Laura Eberhard, Jürg Oetiker, Fridtjof Schröder*
Research Chemistry Department, Givaudan Schweiz AG, 8600 Dübendorf, Switzerland
Fax: +41(44)8242976; e-Mail: fridtjof.schroeder@givaudan.com;
Further Information

Publication History

Received 22 June 2009
Publication Date:
08 September 2009 (online)

Abstract

Tertiary Grignard reagents and dibromomethane efficiently cyclopropanate allylic (and certain homoallylic) magnesium and lithium alcoholates at ambient temperature in ether solvents. Lithium (homo)allyl alcoholates are directly cyclopropanated with magnesium and dibromomethane under Barbier conditions at higher temperatures. The reaction rates depend on the substitution pattern of the (homo)allylic alcoholates and on the counterion with lithium giving best results. Good to excellent syn-selectivities are obtained from α-substituted (homo)allyl alcohols. In tandem reactions, cyclopropyl carbinols are obtained from allyloxylithium or -magnesium intermediates, generated in situ by alkylation of conjugated aldehydes, ketones, and esters as well as from allyl esters and carbonates or vinyloxiranes. [¹]

    References:

  • 1 Brunner G. Eberhard L. Oetiker J. Schröder F. J. Org. Chem.  2008,  73:  7543 
  • 2 Review: Charette AB. Beauchemin A. Org. React.  2001,  58:  1 
  • 4a Friedrich EC. Domek JM. Pong RY. J. Org. Chem.  1985,  50:  4640 
  • 4b Friedrich EC. Lewis EJ. J. Org. Chem.  1990,  55:  2491 
  • 4c Friedrich EC. Niyati-Shirkhodaee F. J. Org. Chem.  1991,  56:  2202 
  • 5a Bolm C. Pupowicz D. Tetrahedron Lett.  1997,  38:  7349 
  • 5b Pupowicz D. Dissertation   Philipps-Universität Marburg; Germany: 1997. 
  • 6a Villiéras J. C. R. Hebd. Seances Acad. Sci.  1965,  261:  4137 
  • 6b Villiéras J. Bull. Chem. Soc. Fr.  1967,  5:  1520 
  • 7 Hoveyda AM. Evans DA. Fu GC. Chem. Rev.  1993,  93:  1307 ; and references therein
  • The formation of these byproducts shows that radical mechanisms are at least partially involved:
  • 8a Ashby EC. Deshpande AK. Doctorovich F. J. Org. Chem.  1994,  59:  6223 
  • 8b Walton JC. In Houben-Weyl   Vol. E17c:  de Meijere A. Thieme; Stuttgart: 1997.  p.2438 
  • 10a Ratier M. Castaing M. Godet J.-Y. Pereyre M. J. Chem. Res., Synop.  1978,  179 
  • 10b Molander GA. Etter JB. J. Org. Chem.  1987,  52:  3942 
  • 10c Molander GA. Harring LS. J. Org. Chem.  1989,  54:  3525 
  • Preparation of substrates 1 according to the literature:
  • 12a 1a: Bajgrowicz JA. Frank I. Frater G. Hennig M. Helv. Chim. Acta  1998,  81:  1349 
  • 12b Schröder F. inventors; WO  2006,066,436.  1b: ; Chem. Abstr. 2006, 145, 103855
  • 12c 1c: Tamura M. Suzukamo G. Tetrahedron Lett.  1981,  22:  577 
  • 12d Tamura M, Suzukamo G, and Hirose K. inventors; EP  0,029,603.  1c: ; Chem. Abstr. 1981, 95, 204220
  • 12e

    1d: see ref. 1.

  • 12f Levorse AT. inventors; US  5,234,902.  1e: ; Chem. Abstr. 1993, 119, 210271
  • 12g Bajgrowicz JA, Bringhen A, Frater G, and Mueller U. inventors; EP  743,297.  1f: ; Chem. Abstr. 1996, 126, 103856
  • 12h Kaiser R, and Lamparsky D. inventors; EP  0,045,453.  1g: ; Chem. Abstr. 1982, 96, 199080
  • 12i Berg-Schultz K, Bajgrowicz JA, and Baudin J. inventors; WO  2005,026,092.  1h: ; Chem. Abstr. 2005, 142, 336041
  • 12j 1i: Jacob P. Brown HC. J. Org. Chem.  1977,  42:  579 
  • 12k Martin A. inventors; EP  770,671.  1j: ; Chem. Abstr. 1997, 126, 334220
  • 12l 1k: Traas PC. Boelens H. Rec. Trav. Chim. Pays-Bas  1973,  92:  985 
  • 12m 1l: Arbuzov BA. Isaeva ZG. Timoshina TN. Efremov YY. Russ. J. Org. Chem.  1993,  29:  1647 
  • 13 Watson SC, Malpass DB, and Yeargin GS. inventors; DE  2,430,287.  ; Chem. Abstr. 1975, 83, 27544
  • Preparation of the substrates:
  • 14a 5r: Ullrich FW. Rotscheidt K. Breitmaier E. Chem. Ber.  1986,  119:  1737 
  • 14b Hall JB, and Wiegers WJ. inventors; US  4010207.  5s: ; Chem. Abstr. 1977, 87, 5396
  • 15 Fanta WI. Erman WF. J. Org. Chem.  1968,  33:  1656 
  • 16 Cheng D. Kreethadumrongdat T. Cohen T. Org. Lett.  2001,  3:  2121 
  • Preparation of substrates 7 according to the literature:
  • 18a 7a: Jurkauskas V. Sadighi JP. Buchwald SL. Org. Lett.  2003,  5:  2417 
  • 18b 7c: Berube G. Fallix AG. Can. J. Chem.  1991,  69:  77 
  • 18c 7d: Trost BM. Keeley DE. J. Am. Chem. Soc.  1976,  98:  248 
  • 18d 7e: Berthelot P. Vaccher C. Devergnies M. Flouquet N. Debaert M. J. Heterocycl. Chem.  1988,  25:  1525 
  • 19 Rathke MW. Nowak M. J. Org. Chem.  1985,  50:  2624 
  • 20 Agarwal VK. Thappa RK. Agarwal SG. Mehra MS. Dhar KL. Atal CK. Indian Perfumer  1983,  27:  112 
  • 21 Barras J.-P. Bourdin B. Schröder F. Chimia  2006,  60:  574 
  • 22a Tamura M. Suzukamo G. Tetrahedron Lett.  1981,  22:  577 
  • 22b Netland P. Org. Prep. Proced. Int.  1980,  12:  261 ; and references therein
  • 23 Sakaguchi T, Nagashima K, and Yoshida T. inventors; JP  49,047,345.  ; Chem. Abstr. 1974, 81, 104862
  • 24 Alternative deprotonation reagents such as NaH or MeMgCl were less efficient. Alternative dihalides such as ClCH2Br, ClCH2I, and CH2I converted 1b similarly into 2b but without remote cyclopropanation to 2a. Evidence for exchange reactions between lithium alkoxides and Grignard reagents: Micha-Screttas M. Constantinos G. Steele BR. Heropoulos GA. Tetrahedron Lett.  2002,  43:  4871 
  • 27a Roquet F. Sevin A. Chodkiewicz W. C. R. Seances Acad. Sci., Ser. C  1970,  848 
  • 27b Ratier M. Castaing M. Godet J.-Y. Pereyre M. J. Chem. Res., Miniprint  1978,  2309 
  • 29 Pretsch E. Bühlmann P. Affolter C. Structure Determination of Organic Compounds   Springer Verlag; Berlin: 2000.  p.202 
  • 30 Narula APS, and Arruda EM. inventors; US  20060,189,510.  ; Chem. Abstr. 2006, 145, 255592
  • 31 Bajgrowicz JA, and Frater G. inventors; EP  0,801,049.  ; Chem. Abstr. 1997, 127, 358652
3

The reactivity order of dihalomethanes is in accordance with that of the radical halogen abstraction from these compounds.

9

Among other byproducts identified by GC/MS: 2,2,4,4-tetramethylpentane (CAS 1070-87-7), 2,2,6,6-tetramethyl-4-methyleneheptane (CAS 141-70-8), 2-tert-butyltetra-hydrofuran (CAS 38624-45-2), 2,2-dimethyldecane (CAS 17302-37-3), 2,2,8-trimethyldecane (CAS 62238-01-1), 2,2-dimethylundecane (CAS 17312-64-0), tert-butyl bromide (CAS 507-19-7), 1-bromo-2,2-dimethylpropane (CAS 630-17-1), 2-bromotetrahydrofuran (CAS 59253-21-3), 3-bromo-2,2,4,4-tetramethylpentane (CAS 107713-49-5).

11

Allylic alcohols, which underwent incomplete conversions with the system CH2Br2 (3 equiv)/t-BuMgCl (4 equiv) (GC conversion to the corresponding cyclopropanes after 18 h in brackets): (E)-hex-2-enol (35%), (Z)-hex-2-enol (65%), nonadienol (50%), geraniol (50%), nerol (10%), oct-1-en-3-ol (50%), linalool (40%), and nerolidol (50%).

17

2-Hexylcyclopent-2-enone = isojasmone B 11. Commercial available from Oxford Chemicals.

25

A possible explanation for this rate enhancement is the more covalent character of the Mg-O bond of the MgX-alcoholates versus the lithium alcoholate ion pair. For mechanistic details see ref. 1.

26

The syn-selectivities are in accord with a staggered Houk model.²7

28

GC-analysis on a 5% phenyl-95% dimethylpolysiloxane column.