Synthesis 2010(2): 239-248  
DOI: 10.1055/s-0029-1217128
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of 5-Amino-1,10b-dihydro-2H-chromeno[3,4-c]pyridine-2,4(3H)-diones from Coumarins and Cyanoacetamides under Basic Conditions

Ornelio Rosati*a, Massimo Curini*a, Maria Carla Marcotullio*a, Gildas Oball-Monda, Caroline Pelucchini*a, Antonio Procopio*b
a Dipartimento di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia, Via del Liceo, 1, 06123 Perugia (PG), Italy
b Dipartimento Farmaco-Biologico, Università degli Studi della Magna Græcia Complesso Ninì Barbieri, 88021 Roccelletta di Borgia (CZ), Italy
Fax: +39(075)5855116; e-Mail: ornros@unipg.it;
Further Information

Publication History

Received 28 May 2009
Publication Date:
20 November 2009 (online)

Abstract

The reaction of various coumarins with cyanoacetamide derivatives under basic conditions (sodium ethoxide, piperidine or 2,2,6,6-tetramethylpiperidine), proceeds via an interesting process which involves skeletal rearrangement of the coumarin, a Michael addition and two cyclizations to afford 5-amino-1,10b-dihydro-2H-chromeno[3,4-c]pyridine-2,4(3H)-diones. The same reaction in the presence of N,N¢-ethane-1,2-diylbis(2-cyanoacetamide) gives the corresponding mono and bis 5-amino-1,10b-dihydro-2H-chromeno[3,4-c]pyridine-2,4(3H)-diones.

    References

  • 1 Heravi MM. Bakhtiari K. Zadsirjan V. Bamoharram FF. Heravi OM. Bioorg. Med. Chem. Lett.  2007,  17:  4262 ; and references cited therein
  • 2a Kidwai M. Saxena S. Khanb MKR. Thukralb SS. Bioorg. Med. Chem. Lett.  2005,  15:  4295 
  • 2b Abd-El-Aziz AS. El-Agrody AM. Bedair AH. Corkery TC. Ata A. Heterocycles  2004,  63:  1793 
  • 2c Yavari I. Djahaniani H. Nasiri F. Tetrahedron  2003,  59:  9409 
  • 2d Shestopalov AM. Emelianova YuM. Nesterov VN. Russ. Chem. Bull. Int. Ed.  2002,  51:  2238 
  • 3 Fujimoto A. Sakurai A. Synthesis  1977,  871 
  • 4 Shi DQ. Wang XS. Tu SJ. Yao CS. Wang YC. Jiegou Huaxue  2002,  21:  60 
  • 5 Roudier JF. Foucaud A. Synthesis  1984,  159 
  • 6a Montanari F. Costantino U. Curini M. Rosati O. Nocchetti M. Microporous Mesoporous Mater.  2008,  107:  16 
  • 6b Curini M. Epifano F. Chimichi S. Montanari F. Nocchetti M. Rosati O. Tetrahedron Lett.  2005,  46:  3497 
  • 7a Curini M. Epifano F. Maltese F. Marcotullio MC. Prieto Gonzales S. Rodriguez JC. Aust. J. Chem.  2003,  56:  59 
  • 7b Curini M. Epifano F. Maltese F. Marcotullio MC. Prieto Gonzales S. Rodriguez JC. Tubaro A. Altinier G. Bioorg. Med. Chem. Lett.  2004,  14:  2241 
  • 8 Curini M. Rosati O. Marcotullio MC. Montanari F. Campagna V. Pace V. Cravotto G. Eur. J. Org. Chem.  2006,  746 
  • 9 Niefang Y. Aramini JM. Germann MW. Huang Z. Tetrahedron Lett.  2000,  41:  6993 
  • 10a Drug Resistance in the Treatment of Cancer   Pinedo HM. Giaccone G. Cambridge University Press; Cambridge: 1998.  p.199 
  • 10b Procopio A. Alcaro S. Cundari S. De Nino A. Ortuso F. Sacchetta P. Pennelli A. Sindona G. J. Med. Chem.  2005,  48:  6084 
  • 11a Kiechle FL. Zhang X. Clin. Chim. Acta  2002,  326:  27 
  • 11b Folkman J. Semin. Cancer Biol.  2003,  13:  159 
  • 11c Reinhold WC. Kouros-Mehr H. Kohn KW. Maunakea AK. Lababidi S. Roschke A. Stover K. Alexander J. Pantazis P. Miller L. Liu E. Kirsch IR. Urasaki Y. Pommier Y. Weinstein JN. Cancer Res.  2003,  63:  1000 
  • 12 Xing C. Wang L. Tang XH. Sham YY. Bioorg. Med. Chem.  2007,  15:  2167 
  • 13 Gazit A. Osherov N. Posner I. Yaish P. Poradosu E. Gilon C. Levitzki A. J. Med. Chem.  1991,  34:  1896 
  • 14 Tattersall PI. Breslin D. Grayson SM. Heath WH. Lou K. McAdams CL. McKean D. Rathsack BM. Willson CG. Chem. Mater.  2004,  16:  1770 
  • 15 Gorobets NY. Yousefi BH. Belaj F. Kappe CO. Tetrahedron  2004,  60:  8633 
  • 16 Demin P. Rounova O. Grunberger T. Cimpean L. Sharfe N. Roifman CM. Bioorg. Med. Chem.  2004,  12:  3019 
  • 17 Devani MB. Shishoo CJ. Pathak US. Parikh SH. Radhakrishnan AV. Padhya AC. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.  1976,  14:  357 
  • 18 Basheer A. Yamataka H. Ammal SC. Rappoport Z. J. Org. Chem.  2007,  72:  5297 
  • 20a Gazit A. Osherov N. Gilon C. Levitzki A. J. Med. Chem.  1996,  39:  4905 
  • 20b Hill T. Odell LR. Edwards JK. Graham ME. McGeachie AB. Rusak J. Quan A. Abagyan R. Scott JL. Robinson PJ. McCluskey A. J. Med. Chem.  2005,  48:  7781 
  • 22a Portugal J. Cashman DJ. Trent JO. Ferrer-Miralles N. Przewloka T. Fokt I. Priebe W. Chaires JB. J. Med. Chem.  2005,  48:  8209 
  • 22b Wakelin LPG. Bu X. Eleftheriou A. Parmar A. Hayek C. Stewart BW. J. Med. Chem.  2003,  46:  5790 
  • 22c Berge T. Jenkins NS. Hopkirk RB. Waring MJ. Edwardson JM. Henderson RM. Nucleic Acids Res.  2002,  30:  2980 
  • 22d Gamage SA. Spicer JA. Finlay GJ. Stewart AJ. Charlton P. Baguley BC. Denny WA. J. Med. Chem.  2001,  44:  1407 
19

Supplementary crystallographic data for compounds 10a (CCDC 723518) and 14 (CCDC 723519) can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

21

Due to the presence of a stereogenic centre on each of the polycyclic units in 15b, 16b and 17b (C-14b and C-14b′), these compounds exist as diastereoisomeric mixtures. The minor structural differences in these sets of diastereoisomers affects the chemical shifts of several of the carbon atoms. These are listed in the ¹³C NMR spectral data as a double peak with a 0.05-0.10 ppm difference in shift, thereby increasing the number of signals overall.