Synlett 2009(10): 1664-1666  
DOI: 10.1055/s-0029-1217330
CLUSTER
© Georg Thieme Verlag Stuttgart ˙ New York

Enantioselective Mannich-Type Reaction Catalyzed by a Chiral Phosphoric Acid Bearing an (S)-Biphenol Backbone

Takahiko Akiyama*a, Takuya Katoha, Keiji Moria, Kazuaki Kannob
a Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
Fax: +81(3)59921029; e-Mail: takahiko.akiyama@gakushuin.ac.jp;
b Mitsubishi Chemical Group Science and Technology Research Center, Inc., 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan
Further Information

Publication History

Received 23 January 2009
Publication Date:
02 June 2009 (online)

Abstract

A novel chiral phosphoric acid bearing a biphenol backbone was synthesized and its catalytic activity was investigated in the enantioselective Mannich-type reaction of ketene silyl acetals with aldimines.

    References and Notes

  • 1 Comprehensive Asymmetric Catalysis   Jacobsen EN. Pfaltz A. Yamamoto H. Springer; Berlin: 1999. 
  • 2a Asymmetric Organocatalysis   Berkessel A. Gröger H. Wiley-VCH; Weinheim: 2005. 
  • 2b Enantioselective Organocatalysis   Dalko PI. Wiley-VCH; Weinheim: 2007. 
  • 3a Akiyama T. Itoh J. Yokota K. Fuchibe K. Angew. Chem. Int. Ed.  2004,  43:  1566 
  • 3b Itoh J. Fuchibe K. Akiyama T. Synthesis  2008,  1319 
  • For reviews of Mannich reactions, see:
  • 4a Friestad GK. Mathiesa AK. Tetrahedron  2007,  63:  2541 
  • 4b Ting A. Schaus SE. Eur. J. Org. Chem.  2007,  5797 
  • 5 Yamanaka M. Itoh J. Fuchibe K. Akiyama T. J. Am. Chem. Soc.  2007,  129:  6756 
  • For selected examples, see:
  • 6a Uraguchi D. Terada M.
    J. Am. Chem. Soc.  2004,  126:  5356 
  • 6b Uraguchi D. Sorimachi K. Terada M. J. Am. Chem. Soc.  2004,  126:  11804 
  • 6c Uraguchi D. Sorimachi K. Terada M. J. Am. Chem. Soc.  2005,  127:  9360 
  • 6d Rowland GB. Zhang H. Rowland EB. Chennamadhavuni S. Wang Y. Antilla JC. J. Am. Chem. Soc.  2005,  127:  15696 
  • 6e Hoffmann S. Seayad AM. List B. Angew. Chem. Int. Ed.  2005,  44:  7424 
  • 6f Terada M. Machioka K. Sorimachi K. Angew. Chem. Int. Ed.  2006,  45:  2254 
  • 6g Storer RI. Carrera DE. Ni Y. MacMillan DWC. J. Am. Chem. Soc.  2006,  128:  84 
  • 6h Seayad J. Seayad AM. List B. J. Am. Chem. Soc.  2006,  128:  1086 
  • 6i Chen X.-H. Xu X.-Y. Liu H. Cun L.-F. Gong L.-Z. J. Am. Chem. Soc.  2006,  128:  14802 
  • 6j Terada M. Sorimachi K. J. Am. Chem. Soc.  2007,  129:  292 
  • 6k Kang Q. Zhao Z.-A. You S.-L. J. Am. Chem. Soc.  2007,  129:  1484 
  • 6l Guo Q.-X. Liu H. Guo C. Luo S.-W. Gu Y. Gong L.-Z. J. Am. Chem. Soc.  2007,  129:  3790 
  • 6m Jia Y.-X. Zhong J. Zhu S.-F. Zhang C.-M. Zhou Q.-L. Angew. Chem. Int. Ed.  2007,  46:  5565 
  • 6n Rueping M. Sugiono E. Schoepke FR. Synlett  2007,  1441 
  • 6o Rueping M. Sugiono E. Theissmann T. Kuenkel A. Koeckritz A. Pews-Davtyan A. Nemati N. Beller M. Org. Lett.  2007,  9:  1065 
  • 6p Rueping M. Theissmann T. Kuenkel A. Koenigs RM. Angew. Chem. Int. Ed.  2008,  47:  6798 
  • 6q Terada M. Tanaka H. Sorimachi K. Synlett  2008,  1661 
  • 6r Xu S. Wang Z. Zhang X. Zhang X. Ding K. Angew. Chem. Int. Ed.  2008,  47:  2840 
  • 6s Terada M. Soga K. Momiyama N. Angew. Chem. Int. Ed.  2008,  47:  4122 
  • 6t Rueping M. Antonchick AP. Angew. Chem. Int. Ed.  2008,  47:  5836 
  • For reviews, see:
  • 7a Connon SJ. Angew. Chem. Int. Ed.  2006,  45:  3909 
  • 7b Akiyama T. Itoh J. Fuchibe K. Adv. Synth. Catal.  2006,  348:  999 
  • 7c Akiyama T. Chem. Rev.  2007,  107:  5744 
  • 7d Akiyama T. In Acid Catalysis in Modern Organic Synthesis   Yamamoto H. Ishihara K. Wiley-VCH; Weinheim: 2008.  p.62 
  • 7e Terada M. Chem. Commun.  2008,  4097 
  • For our reports, see:
  • 8a Akiyama T. Tamura Y. Itoh J. Morita H. Fuchibe K. Synlett  2006,  141 
  • 8b Akiyama T. Morita H. Fuchibe K. J. Am Chem. Soc.  2006,  128:  13070 
  • 8c Itoh J. Fuchibe K. Akiyama T. Angew. Chem. Int. Ed.  2006,  45:  4796 
  • 8d Itoh J. Fuchibe K. Akiyama T. Angew. Chem. Int. Ed.  2008,  47:  4016 
  • 8e Akiyama T. Honma Y. Itoh J. Fuchibe K. Adv. Synth. Catal.  2008,  350:  399 
  • 9 For a chiral phosphoric acid derived from TADDOL, see: Akiyama T. Saitoh Y. Morita H. Fuchibe K. Adv. Synth. Catal.  2005,  347:  1523 
  • For use of phosphoric acid derived from biphenol derivative, see:
  • 10a Rowland GB. Zhang H. Rowland EB. Chennamadhavuni S. Wang Y. Antilla JC. J. Am. Chem. Soc.  2005,  127:  15696 
  • 10b Li G. Liang Y. Antilla JC.
    J. Am. Chem. Soc.  2007,  129:  5830 
  • 10c Rowland EB. Rowland GB. Rivera-Otero E. Antilla JC. J. Am. Chem. Soc.  2007,  129:  12084 
  • 10d See also: Moreau J. Duboc A. Hubert C. Hurvois J.-P. Renaud J.-L. Tetrahedron Lett.  2007,  48:  8647 
  • 11a Takai M, Urata T, and Takahashi T. inventors; JP  2004189696. 
  • See also:
  • 11b Hua Z. Vassar VC. Ojima I. Org. Lett.  2003,  5:  3831 
  • 11c Ojima I, Takai M, Takahashi T, and Urata H. inventors; WO  2004076464. 
  • 16 For bifunctional Lewis acids, see: Shibasaki M. Kanai M. Funabashi K. Chem. Commun.  2002,  1989 
12

( S )-6,6′-Dimethyl-3,3′-bis(4-nitrophenyl)-1,1′-biphenyl-2,2′-yl Phosphate (2a)
[α]D ²¹ +365 (c 1.0, CHCl3). ¹H NMR (400 MHz, CDCl3): δ = 8.06-8.04 (m, 4 H), 7.55-7.53 (m, 4 H), 7.39-7.37 (m, 4 H), 2.58 (s, 1 H), 2.35 (s, 6 H). ³¹P NMR(400 MHz, CDCl3): δ = 0.74. ¹³C NMR (75 MHz, CDCl3): δ = 146.9, 144.7, 143.1, 140.3, 130.2, 130.0, 129.7, 128.4, 127.7, 123.3, 20.0. ³¹P NMR (162 MHz, CDCl3): δ = 0.74. Anal. Calcd (%) for C26H19O8P: C, 60.24; H, 3.69; N, 5.40. Found: C, 60.13; H, 3.66; N, 5.45%.

13

( R )-Methyl 3-( N -2-Hydroxyphenylamino)-2,2-dimethyl-3-phenylpropionate [α]D ²¹ +1.4 (c 0.45, CHCl3; 87% ee); R f = 0.4 (hexane-EtOAc = 3:1). ¹H NMR (400 MHz, CDCl3): δ = 7.29-7.19 (m, 5 H), 6.69 (1 H, dd, J = 7.7, 1.5 Hz), 6.61 (1 H, ddd, J = 7.7, 7.7, 1.5 Hz), 6.53 (1 H, ddd, J = 7.7, 7.7, 1.5 Hz), 6.38 (1 H, dd, J = 7.7, 1.5 Hz), 5.80 (br s, 1 H), 4.55 (br s, 1 H), 4.55 (s, 1 H), 3.69 (s, 3 H), 1.24 (s, 3 H), 1.22 (s, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 177.7, 144.3, 139.0, 135.5, 128.3, 127.9, 127.41, 121.0, 117.9, 114.4, 113.9, 64.6, 52.2, 47.4, 24.4, 20.0.

14

When 1a was employed in the reaction with the aldimine derived from benzaldehyde, the corresponding adduct was obtained in 87% ee.³

15

The enantioselectivities obtained with 1a: 96% (Ar = Ph), 81% (Ar = 4-MeC6H4), 88% (Ar = 4-MeOC6H4), 84% (Ar = 4-FC6H4), 90% (Ar = PhCH=CHC6H4).³