References and Notes
For reviews, see:
<A NAME="RW00809ST-1A">1a</A>
Wong HNC.
Hon M.-Y.
Tse C.-W.
Yip Y.-C.
Tanko J.
Hudlicky T.
Chem. Rev.
1989,
89:
165
<A NAME="RW00809ST-1B">1b</A>
de Meijere A.
Kozhushkov SI.
Khlebnikov AF.
Top. Curr. Chem.
2000,
207:
89
<A NAME="RW00809ST-1C">1c</A>
Herndon JW.
Top. Curr. Chem.
2003,
7:
329
<A NAME="RW00809ST-1D">1d</A>
Reissig H.-U.
Zimmer R.
Chem. Rev.
2003,
103:
1151
<A NAME="RW00809ST-1E">1e</A>
Gnad F.
Reiser O.
Chem. Rev.
2003,
103:
1603
<A NAME="RW00809ST-1F">1f</A>
Yu M.
Pagenkopf BL.
Tetrahedron
2005,
61:
321
<A NAME="RW00809ST-1G">1g</A>
Kulinkovich OG.
Russ. Chem. Rev.
1993,
62:
839
For recent examples, see
<A NAME="RW00809ST-2A">2a</A>
Lautens M.
Ren Y.
J. Am. Chem. Soc.
1996,
118:
9597
<A NAME="RW00809ST-2B">2b</A>
Alper PB.
Meyers C.
Lerchner A.
Siegel DR.
Carreira EM.
Angew. Chem. Int. Ed.
1999,
38:
3186
<A NAME="RW00809ST-2C">2c</A>
Bertozzi F.
Gustafsson M.
Olsson R.
Org.
Lett.
2002,
4:
4333
<A NAME="RW00809ST-2D">2d</A>
Lautens M.
Han W.
Liu JH.-C.
J.
Am. Chem. Soc.
2003,
125:
4028
<A NAME="RW00809ST-2E">2e</A>
Rigo B.
Gautret P.
Tetrahedron Lett.
2006,
47:
295
<A NAME="RW00809ST-2F">2f</A>
Huang X.
Fu W.
Miao M.
Tetrahedron
Lett.
2008,
49:
2359
<A NAME="RW00809ST-3">3</A>
Lifchits O.
Charette AB.
Org. Lett.
2008,
10:
2809
For use in an annulation of 3-alkylindoles
with 1,1-cyclo-propanediesters, see:
<A NAME="RW00809ST-4A">4a</A>
Harrington P.
Kerr MA.
Tetrahedron Lett.
1997,
38:
5949
<A NAME="RW00809ST-4B">4b</A>
Kerr MA.
Keddy RG.
Tetrahedron
Lett.
1999,
40:
5671
<A NAME="RW00809ST-5">5</A> For the reaction of cyclopropane-1,1-dicarboxylic
acid diethyl ester with phenyl mercaptan to give homoconjugate product
(2-phenylsulfanyl-ethyl)-malonic acid diethyl ester, see:
Stewart JM.
Westberg HH.
J.
Org. Chem.
1965,
30:
1951
<A NAME="RW00809ST-6">6</A> The homoconjugate addition reactions
of activated cyclopropane derivatives using β-keto esters
as nucleophiles have to be performed under catalysis of ytterbium(III) trifluoromethanesulfonate
at high pressures. See:
Kotsuki H.
Arimura K.
Maruzawa R.
Ohshima R.
Synlett
1999,
650
<A NAME="RW00809ST-7">7</A>
Srinivasulu M.
Reddy VLN.
Reddy SM.
Ravikanth V.
Raju TV.
Ramakrishna S.
Venkateswarlu Y.
Helv. Chim. Acta
2005,
88:
2527
<A NAME="RW00809ST-8">8</A>
Yang Y.-H.
Shi M.
Org. Lett.
2006,
8:
1709
<A NAME="RW00809ST-9">9</A>
Shi M.
Tang X.-Y.
Yang Y.-H.
J. Org.
Chem.
2008,
73:
5311
For recent reviews on organocatalysis,
see:
<A NAME="RW00809ST-10A">10a</A>
Barbas CF.
Angew. Chem. Int. Ed.
2008,
47:
42
<A NAME="RW00809ST-10B">10b</A>
List B.
Chem. Rev.
2007,
107:
5413
<A NAME="RW00809ST-10C">10c</A>
Erkkilä A.
Majander I.
Pihko PM.
Chem. Rev.
2007,
107:
5416
<A NAME="RW00809ST-10D">10d</A>
Mukherjee S.
Yang JW.
Hoffmann S.
List B.
Chem. Rev.
2007,
107:
5471
<A NAME="RW00809ST-10E">10e</A>
Dondoni A.
Massi A.
Angew. Chem. Int. Ed.
2008,
47:
4638
<A NAME="RW00809ST-10F">10f</A>
Dalko PI.
Moisan L.
Angew. Chem. Int.
Ed.
2004,
43:
5138
<A NAME="RW00809ST-10G">10g</A>
Dalko PI.
Moisan L.
Angew. Chem.
Int. Ed.
2001,
40:
3726
<A NAME="RW00809ST-10H">10h</A>
Enantioselective Organocatalysis
Dalko PI.
Wiley-VCH;
Weinheim:
2007.
For additional examples, see
<A NAME="RW00809ST-11A">11a</A>
Halland N.
Hansen T.
Jøgensen KA.
Angew. Chem. Int. Ed.
2003,
42:
4955
<A NAME="RW00809ST-11B">11b</A>
Prieto A.
Halland N.
Jøgensen KA.
Org. Lett.
2005,
7:
3897
<A NAME="RW00809ST-11C">11c</A>
Knudsen KR.
Mitchell CET.
Ley SV.
Chem. Commun.
2006,
66
<A NAME="RW00809ST-11D">11d</A>
Deng K.
Bensari-Bouguerra A.
Whetstone J.
Cohen T.
J. Org. Chem.
2006,
71:
2360
<A NAME="RW00809ST-11E">11e</A>
Dinér P.
Nielsen M.
Marigo M.
Jøgensen KA.
Angew.
Chem. Int. Ed.
2007,
46:
1983
<A NAME="RW00809ST-12">12</A> Nucpeophilic ring opening of cyclopropyl
ketones by thiophenoxide anion has been known by Anand. See:
Anand RC.
Ranjan H.
Indian
J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.
1985,
24:
673
For example, benzothiepine derivatives
have been reported to show activity as apical sodium-codependent
bile acid transporter for use in the treatment of hyperlipidemic conditions
and CCR5 antagonists as anti-HIV-1 agents. See:
<A NAME="RW00809ST-13A">13a</A>
Tremont SJ.
Lee LF.
Huang H.-C.
Keller
BT.
Banerjee SC.
Both SR.
Carpenter AJ.
Wang C.-C.
G arland DJ.
Huang W.
Jones C.
Koeller KJ.
Kolodziej SA.
Li J.
Manning RE.
Mahoney MW.
Miller RE.
Mischke DA.
Rath NP.
Fletcher T.
Reinhard EJ.
Tollefson MB.
Vernier WF.
Wagner
GM.
Rapp SR.
Beaudry J.
Glenn K.
Regina K.
Schuh JR.
Smith ME.
Trivedi JS.
Reitz DB.
J. Med. Chem.
2005,
48:
5837
<A NAME="RW00809ST-13B">13b</A>
Seto M.
Aramaki Y.
Okawa T.
Miyamoto N.
Aikawa K.
Kanzaki N.
Niwa S.
Iizawa Y.
Baba M.
Shiraishi M.
Chem. Pharm. Bull.
2004,
52:
577
<A NAME="RW00809ST-13C">13c</A>
IkemotoT .
Ito T.
Nishiguchi A.
Tomimatsu K.
Tetrahedron
2004,
48:
10851
<A NAME="RW00809ST-14">14</A>
General Procedure
for the Ring Opening of Cyclopropanecarbaldehydes 1 by Nucleophilic
Attack with Benzenethiols 2
A mixture of cyclopropanecarbaldehyde 1 (1 mmol), benzenethiol 2 (1.2
mmol), (S)-proline (46 mg, 0.4 mmol), and
4 Å MS (500 mg) in THF (2 mL) was stirred at r.t. for 3 d,
then H2O (5 mL) was added to quench the reaction. The aqueous
phase was extracted with Et2O (100 mL), and the organic
phase was dried over Na2SO4, filtrated, and concentrated.
The residue was purified by column chromatography (silica gel, PE-EtOAc)
to afford 4a-p as pale
yellow oil. All new compounds have been isolated in pure form and
characterized by spectral data (¹H NMR,
¹³C
NMR, and MS).
Selected Data for Compounds
4
Compound 4a: yield 55%. ¹H
NMR (400 MHz, CDCl3): δ = 9.66
(1 H, s, CHO), 7.30-7.18 (10 H, m, ArH), 4.16 (1 H, dd, J = 6.9, 8.3
Hz, SCH), 2.48 (2 H, t, J = 7.3
Hz, COCH2), 2.30-2.15 (2 H, m, H-3). ¹³C
NMR (125 MHz, CDCl3): δ = 201.1,
141.0, 134.3, 132.4, 128.7, 128.5, 127.7, 127.4, 127.2, 52.6, 41.7,
28.5. GC-MS (EI): m/z = 256.1 [M]+.
<A NAME="RW00809ST-15">15</A>
Typical procedure for the tandem synthesis
of benzo[b]-
thiepines 6 was operated as described in ref. 14,
except for replacing benzenethiols 2 with o-salicylaldehydes 5.
The reaction gave 6 as off-white crystal
solids. All new compounds have been isolated in pure form and charac-terized
by spectral data (¹H NMR, ¹³C
NMR, and MS).
Selected Data for Compounds
6
Compound 6e: yield 56%;
mp 120-121 ˚C. ¹H NMR (400 MHz,
CDCl3): δ = 9.62
(1 H, s, CHO), 7.40-6.84 (8 H, m, ArH, and CH=C),
4.26 (1 H, dd, J = 3.2,
11.4 Hz, SCH), 3.79 (3 H, s, OCH3), 3.26-3.02
(2 H, m, CH2), 2.37 (3 H, s, CH3). ¹³C
NMR (100 MHz, CDCl3): δ = 194.9,
159.0, 150.4, 141.8, 137.5, 136.0, 135.2, 134.7, 134.5, 132.9, 130.9, 128.0,
114.2, 55.4, 52.6, 37.3, 21.0. ESI-HRMS: m/z calcd for
C19H18O2S: 310.1028; found: 310.1031.
For remarkable examples, see:
<A NAME="RW00809ST-16A">16a</A>
Rios R.
Sunden H.
Ibrahem I.
Zhao G.-L.
Eriksson L.
Cordova A.
Tetrahedron Lett.
2006,
47:
8547
<A NAME="RW00809ST-16B">16b</A>
Wang W.
Li H.
Wang J.
Zu L.
J. Am. Chem. Soc.
2006,
128:
10354
<A NAME="RW00809ST-16C">16c</A>
Ibrahem I.
Sunden H.
Rios R.
Zhao G.-L.
Cordova A.
Chimia
2007,
61:
219
<A NAME="RW00809ST-17">17</A>
For comparision, we also conducted
the tandem reaction with the ‘best’ substrate 1c under Anand’s condition (ref. 12).
After refuxing in EtOH for 3 h, the reaction afforded a mixture
of products, from which 6g was isolated
in 13% yield.
<A NAME="RW00809ST-18">18</A>
Enantiomeric excess was determined
chromatographically as follows: Diacel CHIRALPAK AS-H, hexane-2-PrOH (80:20),
flow rate 0.6 mL/min, λ = 254
nm.
<A NAME="RW00809ST-19">19</A>
A single crystal of 6e suitable
for X-ray diffraction analysis was obtained by recrystallization
from CH2Cl2-n-hexane. Crystallographic
data have been deposited with the Cambridge Crystallographic Data
Center as supplementary publication number CCDC 726088.
<A NAME="RW00809ST-20">20</A>
Arai I.
Mori A.
Yamamoto H.
J.
Am. Chem. Soc.
1985,
107:
8254